A. V. Egorysheva, S. V. Golodukhina, K. R. Plukchi, L. S. Razvorotneva, A. V. Khoroshilov, O. G. Ellert
{"title":"La2O3-(Ni/Со)O-Sb2O5 体系的固相下平衡","authors":"A. V. Egorysheva, S. V. Golodukhina, K. R. Plukchi, L. S. Razvorotneva, A. V. Khoroshilov, O. G. Ellert","doi":"10.1134/s0036023624601107","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Subsolidus phase equilibria in the La<sub>2</sub>O<sub>3</sub>–(Ni/Со)O–Sb<sub>2</sub>O<sub>5</sub> systems have been studied. A previously unknown compound La<sub>4</sub>Sb<sub>2</sub>O<sub>11</sub> was found to exist in the La<sub>2</sub>O<sub>3</sub>–Sb<sub>2</sub>O<sub>5</sub> system. La<sub>4</sub>Sb<sub>2</sub>O<sub>11</sub> has been shown to decompose at 1060°C to form La<sub>3</sub>SbO<sub>7</sub> and LaSbO<sub>4</sub>. Two ternary oxides (LaNi<sub>2</sub>SbO<sub>6</sub> and La<sub>2</sub>NiSb<sub>2</sub>O<sub>9</sub>) have been discovered in the La<sub>2</sub>O<sub>3</sub>–NiO–Sb<sub>2</sub>O<sub>5</sub> system. These new compounds are stable and do not undergo polymorphic transformations throughout the range of temperatures studied (25–1350°C). The existence of previously known ternary oxides, namely perovskite La<sub>3</sub>Ni<sub>2</sub>SbO<sub>9</sub> and rosiaite LaNi<sub>1/3</sub>Sb<sub>5/3</sub>O<sub>6</sub>, has been verified. In the La<sub>2</sub>O<sub>3</sub>–CoO–Sb<sub>2</sub>O<sub>5</sub> system, two new compounds (LaCo<sub>2</sub>SbO<sub>6</sub> and La<sub>2</sub>CoSb<sub>2</sub>O<sub>9</sub>) have been found along with previously known perovskite La<sub>3</sub>Co<sub>2</sub>SbO<sub>9</sub>, rosiaite LaCo<sub>1/3</sub>Sb<sub>5/3</sub>O<sub>6</sub>, and rhombohedral pyrochlore La<sub>3</sub>Co<sub>2</sub>Sb<sub>3</sub>O<sub>14</sub>. These new compounds are isostructural to those found in the nickel oxide system. La<sub>2</sub>CoSb<sub>2</sub>O<sub>9</sub>, unlike its nickel analogue, decomposes at 990°C. For LaCo<sub>2</sub>SbO<sub>6</sub>, no thermal events associated with polymorphic transitions or melting have been detected on DSC curves up to 1350°C. An inspection of diffuse reflectance spectra of the newly synthesized LaNi<sub>2</sub>SbO<sub>6</sub>, La<sub>2</sub>NiSb<sub>2</sub>O<sub>9</sub>, LaCo<sub>2</sub>SbO<sub>6</sub>, and La<sub>2</sub>CoSb<sub>2</sub>O<sub>9</sub> phases showed that the oxidation state of nickel and cobalt in them is 2+. The 1050°C isothermal sections of La<sub>2</sub>O<sub>3</sub>–(Ni/Co)O–Sb<sub>2</sub>O<sub>5</sub> systems have been constructed.</p>","PeriodicalId":762,"journal":{"name":"Russian Journal of Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subsolidus Phase Equilibria in the La2O3–(Ni/Со)O–Sb2O5 Systems\",\"authors\":\"A. V. Egorysheva, S. V. Golodukhina, K. R. Plukchi, L. S. Razvorotneva, A. V. Khoroshilov, O. G. Ellert\",\"doi\":\"10.1134/s0036023624601107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Subsolidus phase equilibria in the La<sub>2</sub>O<sub>3</sub>–(Ni/Со)O–Sb<sub>2</sub>O<sub>5</sub> systems have been studied. A previously unknown compound La<sub>4</sub>Sb<sub>2</sub>O<sub>11</sub> was found to exist in the La<sub>2</sub>O<sub>3</sub>–Sb<sub>2</sub>O<sub>5</sub> system. La<sub>4</sub>Sb<sub>2</sub>O<sub>11</sub> has been shown to decompose at 1060°C to form La<sub>3</sub>SbO<sub>7</sub> and LaSbO<sub>4</sub>. Two ternary oxides (LaNi<sub>2</sub>SbO<sub>6</sub> and La<sub>2</sub>NiSb<sub>2</sub>O<sub>9</sub>) have been discovered in the La<sub>2</sub>O<sub>3</sub>–NiO–Sb<sub>2</sub>O<sub>5</sub> system. These new compounds are stable and do not undergo polymorphic transformations throughout the range of temperatures studied (25–1350°C). The existence of previously known ternary oxides, namely perovskite La<sub>3</sub>Ni<sub>2</sub>SbO<sub>9</sub> and rosiaite LaNi<sub>1/3</sub>Sb<sub>5/3</sub>O<sub>6</sub>, has been verified. In the La<sub>2</sub>O<sub>3</sub>–CoO–Sb<sub>2</sub>O<sub>5</sub> system, two new compounds (LaCo<sub>2</sub>SbO<sub>6</sub> and La<sub>2</sub>CoSb<sub>2</sub>O<sub>9</sub>) have been found along with previously known perovskite La<sub>3</sub>Co<sub>2</sub>SbO<sub>9</sub>, rosiaite LaCo<sub>1/3</sub>Sb<sub>5/3</sub>O<sub>6</sub>, and rhombohedral pyrochlore La<sub>3</sub>Co<sub>2</sub>Sb<sub>3</sub>O<sub>14</sub>. These new compounds are isostructural to those found in the nickel oxide system. La<sub>2</sub>CoSb<sub>2</sub>O<sub>9</sub>, unlike its nickel analogue, decomposes at 990°C. For LaCo<sub>2</sub>SbO<sub>6</sub>, no thermal events associated with polymorphic transitions or melting have been detected on DSC curves up to 1350°C. An inspection of diffuse reflectance spectra of the newly synthesized LaNi<sub>2</sub>SbO<sub>6</sub>, La<sub>2</sub>NiSb<sub>2</sub>O<sub>9</sub>, LaCo<sub>2</sub>SbO<sub>6</sub>, and La<sub>2</sub>CoSb<sub>2</sub>O<sub>9</sub> phases showed that the oxidation state of nickel and cobalt in them is 2+. The 1050°C isothermal sections of La<sub>2</sub>O<sub>3</sub>–(Ni/Co)O–Sb<sub>2</sub>O<sub>5</sub> systems have been constructed.</p>\",\"PeriodicalId\":762,\"journal\":{\"name\":\"Russian Journal of Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s0036023624601107\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0036023624601107","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Subsolidus Phase Equilibria in the La2O3–(Ni/Со)O–Sb2O5 Systems
Abstract
Subsolidus phase equilibria in the La2O3–(Ni/Со)O–Sb2O5 systems have been studied. A previously unknown compound La4Sb2O11 was found to exist in the La2O3–Sb2O5 system. La4Sb2O11 has been shown to decompose at 1060°C to form La3SbO7 and LaSbO4. Two ternary oxides (LaNi2SbO6 and La2NiSb2O9) have been discovered in the La2O3–NiO–Sb2O5 system. These new compounds are stable and do not undergo polymorphic transformations throughout the range of temperatures studied (25–1350°C). The existence of previously known ternary oxides, namely perovskite La3Ni2SbO9 and rosiaite LaNi1/3Sb5/3O6, has been verified. In the La2O3–CoO–Sb2O5 system, two new compounds (LaCo2SbO6 and La2CoSb2O9) have been found along with previously known perovskite La3Co2SbO9, rosiaite LaCo1/3Sb5/3O6, and rhombohedral pyrochlore La3Co2Sb3O14. These new compounds are isostructural to those found in the nickel oxide system. La2CoSb2O9, unlike its nickel analogue, decomposes at 990°C. For LaCo2SbO6, no thermal events associated with polymorphic transitions or melting have been detected on DSC curves up to 1350°C. An inspection of diffuse reflectance spectra of the newly synthesized LaNi2SbO6, La2NiSb2O9, LaCo2SbO6, and La2CoSb2O9 phases showed that the oxidation state of nickel and cobalt in them is 2+. The 1050°C isothermal sections of La2O3–(Ni/Co)O–Sb2O5 systems have been constructed.
期刊介绍:
Russian Journal of Inorganic Chemistry is a monthly periodical that covers the following topics of research: the synthesis and properties of inorganic compounds, coordination compounds, physicochemical analysis of inorganic systems, theoretical inorganic chemistry, physical methods of investigation, chemistry of solutions, inorganic materials, and nanomaterials.