{"title":"斑马的条纹是如何形成的?依赖曲率的扩散使图灵图案在三维表面上定向","authors":"Michael F. Staddon","doi":"10.1103/physreve.110.034402","DOIUrl":null,"url":null,"abstract":"Many animals have patterned fur, feathers, or scales, such as the stripes of a zebra. Turing models, or reaction-diffusion systems, are a class of mathematical models of interacting species that have been successfully used to generate animal-like patterns for many species. When diffusion of the inhibitor is high enough relative to the activator, a diffusion-driven instability can spontaneously form patterns. However, it is not just the type of pattern but also the orientation that matters, and it remains unclear how patterns are oriented in practice. Here, we propose a mechanism by which the curvature of the surface influences the rate of diffusion, and can recapture the correct orientation of stripes on models of a zebra and of a cat in numerical simulations. Previous work has shown how anisotropic diffusion can give stripe forming reaction-diffusion systems a bias in orientation. From the observation that zebra stripes run around the direction of highest curvature, that is around the torso and legs, we apply this result by modifying the anisotropic diffusion rates based on the local curvature. These results show how local geometry can influence the reaction dynamics to give robust, global-scale patterns. Overall, this model proposes a coupling between the system geometry and reaction-diffusion dynamics that can give global control over the patterning by using only local curvature information. Such a model can give shape and positioning information in animal development without the need for spatially dependent morphogen gradients.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How the zebra got its stripes: Curvature-dependent diffusion orients Turing patterns on three-dimensional surfaces\",\"authors\":\"Michael F. Staddon\",\"doi\":\"10.1103/physreve.110.034402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many animals have patterned fur, feathers, or scales, such as the stripes of a zebra. Turing models, or reaction-diffusion systems, are a class of mathematical models of interacting species that have been successfully used to generate animal-like patterns for many species. When diffusion of the inhibitor is high enough relative to the activator, a diffusion-driven instability can spontaneously form patterns. However, it is not just the type of pattern but also the orientation that matters, and it remains unclear how patterns are oriented in practice. Here, we propose a mechanism by which the curvature of the surface influences the rate of diffusion, and can recapture the correct orientation of stripes on models of a zebra and of a cat in numerical simulations. Previous work has shown how anisotropic diffusion can give stripe forming reaction-diffusion systems a bias in orientation. From the observation that zebra stripes run around the direction of highest curvature, that is around the torso and legs, we apply this result by modifying the anisotropic diffusion rates based on the local curvature. These results show how local geometry can influence the reaction dynamics to give robust, global-scale patterns. Overall, this model proposes a coupling between the system geometry and reaction-diffusion dynamics that can give global control over the patterning by using only local curvature information. Such a model can give shape and positioning information in animal development without the need for spatially dependent morphogen gradients.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034402\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034402","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
How the zebra got its stripes: Curvature-dependent diffusion orients Turing patterns on three-dimensional surfaces
Many animals have patterned fur, feathers, or scales, such as the stripes of a zebra. Turing models, or reaction-diffusion systems, are a class of mathematical models of interacting species that have been successfully used to generate animal-like patterns for many species. When diffusion of the inhibitor is high enough relative to the activator, a diffusion-driven instability can spontaneously form patterns. However, it is not just the type of pattern but also the orientation that matters, and it remains unclear how patterns are oriented in practice. Here, we propose a mechanism by which the curvature of the surface influences the rate of diffusion, and can recapture the correct orientation of stripes on models of a zebra and of a cat in numerical simulations. Previous work has shown how anisotropic diffusion can give stripe forming reaction-diffusion systems a bias in orientation. From the observation that zebra stripes run around the direction of highest curvature, that is around the torso and legs, we apply this result by modifying the anisotropic diffusion rates based on the local curvature. These results show how local geometry can influence the reaction dynamics to give robust, global-scale patterns. Overall, this model proposes a coupling between the system geometry and reaction-diffusion dynamics that can give global control over the patterning by using only local curvature information. Such a model can give shape and positioning information in animal development without the need for spatially dependent morphogen gradients.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.