Dmitriy V. Melnikov, Nelson R. Barker, Maria E. Gracheva
{"title":"椭圆形颗粒导致的纳米孔离子流阻塞","authors":"Dmitriy V. Melnikov, Nelson R. Barker, Maria E. Gracheva","doi":"10.1103/physreve.110.034403","DOIUrl":null,"url":null,"abstract":"Nanopores in solid-state membranes have been used to detect, identify, filter, and characterize nanoparticles and biological molecules. In this work, we simulate an ionic flow through a nanopore while an ellipsoidal nanoparticle translocates through a pore. We numerically solve the Poisson-Nernst-Planck equations to obtain the ionic current values for different aspect ratios, sizes, and orientations of a translocating particle. By extending the existing theoretical model for the ionic current in the nanopore to the particles of ellipsoidal shape, we propose semiempirical fitting formulas which describe our computed data within 5% accuracy. We also demonstrate how the derived formulas can be used to identify the dimensions of nanoparticles from the available experimental data which may have useful applications in bionanotechnology.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic current blockade in a nanopore due to an ellipsoidal particle\",\"authors\":\"Dmitriy V. Melnikov, Nelson R. Barker, Maria E. Gracheva\",\"doi\":\"10.1103/physreve.110.034403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanopores in solid-state membranes have been used to detect, identify, filter, and characterize nanoparticles and biological molecules. In this work, we simulate an ionic flow through a nanopore while an ellipsoidal nanoparticle translocates through a pore. We numerically solve the Poisson-Nernst-Planck equations to obtain the ionic current values for different aspect ratios, sizes, and orientations of a translocating particle. By extending the existing theoretical model for the ionic current in the nanopore to the particles of ellipsoidal shape, we propose semiempirical fitting formulas which describe our computed data within 5% accuracy. We also demonstrate how the derived formulas can be used to identify the dimensions of nanoparticles from the available experimental data which may have useful applications in bionanotechnology.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034403\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034403","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Ionic current blockade in a nanopore due to an ellipsoidal particle
Nanopores in solid-state membranes have been used to detect, identify, filter, and characterize nanoparticles and biological molecules. In this work, we simulate an ionic flow through a nanopore while an ellipsoidal nanoparticle translocates through a pore. We numerically solve the Poisson-Nernst-Planck equations to obtain the ionic current values for different aspect ratios, sizes, and orientations of a translocating particle. By extending the existing theoretical model for the ionic current in the nanopore to the particles of ellipsoidal shape, we propose semiempirical fitting formulas which describe our computed data within 5% accuracy. We also demonstrate how the derived formulas can be used to identify the dimensions of nanoparticles from the available experimental data which may have useful applications in bionanotechnology.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.