{"title":"周期性驱动自旋链的扩展复杂性和量子混沌","authors":"Amin A. Nizami, Ankit W. Shrestha","doi":"10.1103/physreve.110.034201","DOIUrl":null,"url":null,"abstract":"The complexity of quantum states under dynamical evolution can be investigated by studying the spread with time of the state over a predefined basis. It is known that this complexity is minimized by choosing the Krylov basis, thus defining the spread complexity. We study the dynamics of spread complexity for quantum maps using the Arnoldi iterative procedure. The main illustrative quantum many-body model we use is the periodically kicked Ising spinchain with nonintegrable deformations, a chaotic system where we look at both local and nonlocal interactions. In the various cases, we find distinctive behavior of the Arnoldi coefficients and spread complexity for regular versus chaotic dynamics: suppressed fluctuations in the Arnoldi coefficients as well as larger saturation value in spread complexity in the chaotic case. We compare the behavior of the Krylov measures with that of standard spectral diagnostics of chaos. We also study the effect of changing the driving frequency on the complexity saturation.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spread complexity and quantum chaos for periodically driven spin chains\",\"authors\":\"Amin A. Nizami, Ankit W. Shrestha\",\"doi\":\"10.1103/physreve.110.034201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of quantum states under dynamical evolution can be investigated by studying the spread with time of the state over a predefined basis. It is known that this complexity is minimized by choosing the Krylov basis, thus defining the spread complexity. We study the dynamics of spread complexity for quantum maps using the Arnoldi iterative procedure. The main illustrative quantum many-body model we use is the periodically kicked Ising spinchain with nonintegrable deformations, a chaotic system where we look at both local and nonlocal interactions. In the various cases, we find distinctive behavior of the Arnoldi coefficients and spread complexity for regular versus chaotic dynamics: suppressed fluctuations in the Arnoldi coefficients as well as larger saturation value in spread complexity in the chaotic case. We compare the behavior of the Krylov measures with that of standard spectral diagnostics of chaos. We also study the effect of changing the driving frequency on the complexity saturation.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034201\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034201","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Spread complexity and quantum chaos for periodically driven spin chains
The complexity of quantum states under dynamical evolution can be investigated by studying the spread with time of the state over a predefined basis. It is known that this complexity is minimized by choosing the Krylov basis, thus defining the spread complexity. We study the dynamics of spread complexity for quantum maps using the Arnoldi iterative procedure. The main illustrative quantum many-body model we use is the periodically kicked Ising spinchain with nonintegrable deformations, a chaotic system where we look at both local and nonlocal interactions. In the various cases, we find distinctive behavior of the Arnoldi coefficients and spread complexity for regular versus chaotic dynamics: suppressed fluctuations in the Arnoldi coefficients as well as larger saturation value in spread complexity in the chaotic case. We compare the behavior of the Krylov measures with that of standard spectral diagnostics of chaos. We also study the effect of changing the driving frequency on the complexity saturation.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.