{"title":"带有量子平面转子的奥托循环","authors":"Michael Gaida, Stefan Nimmrichter","doi":"10.1103/physreve.110.034109","DOIUrl":null,"url":null,"abstract":"We present two realizations of an Otto cycle with a quantum planar rotor as the working medium controlled by means of external fields. By comparing the quantum and the classical description of the working medium, we single out genuine quantum effects with regard to the performance and the engine and refrigerator modes of the Otto cycle. The first example is a rotating electric dipole subjected to a controlled electric field, equivalent to a quantum pendulum. Here we find a systematic disadvantage of the quantum rotor compared to its classical counterpart. In contrast, a genuine quantum advantage can be observed with a charged rotor generating a magnetic moment that is subjected to a controlled magnetic field. We prove that the classical rotor is inoperable as a working medium for any choice of parameters, whereas the quantum rotor supports an engine and a refrigerator mode, exploiting the quantum statistics during the cold strokes of the cycle.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Otto cycles with a quantum planar rotor\",\"authors\":\"Michael Gaida, Stefan Nimmrichter\",\"doi\":\"10.1103/physreve.110.034109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two realizations of an Otto cycle with a quantum planar rotor as the working medium controlled by means of external fields. By comparing the quantum and the classical description of the working medium, we single out genuine quantum effects with regard to the performance and the engine and refrigerator modes of the Otto cycle. The first example is a rotating electric dipole subjected to a controlled electric field, equivalent to a quantum pendulum. Here we find a systematic disadvantage of the quantum rotor compared to its classical counterpart. In contrast, a genuine quantum advantage can be observed with a charged rotor generating a magnetic moment that is subjected to a controlled magnetic field. We prove that the classical rotor is inoperable as a working medium for any choice of parameters, whereas the quantum rotor supports an engine and a refrigerator mode, exploiting the quantum statistics during the cold strokes of the cycle.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034109\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034109","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
We present two realizations of an Otto cycle with a quantum planar rotor as the working medium controlled by means of external fields. By comparing the quantum and the classical description of the working medium, we single out genuine quantum effects with regard to the performance and the engine and refrigerator modes of the Otto cycle. The first example is a rotating electric dipole subjected to a controlled electric field, equivalent to a quantum pendulum. Here we find a systematic disadvantage of the quantum rotor compared to its classical counterpart. In contrast, a genuine quantum advantage can be observed with a charged rotor generating a magnetic moment that is subjected to a controlled magnetic field. We prove that the classical rotor is inoperable as a working medium for any choice of parameters, whereas the quantum rotor supports an engine and a refrigerator mode, exploiting the quantum statistics during the cold strokes of the cycle.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.