{"title":"尖峰神经元网络群体动力学的罗塞塔石碑","authors":"Gianni V. Vinci, Maurizio Mattia","doi":"10.1103/physreve.110.034303","DOIUrl":null,"url":null,"abstract":"Populations of spiking neuron models have densities of their microscopic variables (e.g., single-cell membrane potentials) whose evolution fully capture the collective dynamics of biological networks, even outside equilibrium. Despite its general applicability, the Fokker-Planck equation governing such evolution is mainly studied within the borders of the linear response theory, although alternative spectral expansion approaches offer some advantages in the study of the out-of-equilibrium dynamics. This is mainly due to the difficulty in computing the state-dependent coefficients of the expanded system of differential equations. Here, we address this issue by deriving analytic expressions for such coefficients by pairing perturbative solutions of the Fokker-Planck approach with their counterparts from the spectral expansion. A tight relationship emerges between several of these coefficients and the Laplace transform of the interspike interval density (i.e., the distribution of first-passage times). “Coefficients” like the current-to-rate gain function, the eigenvalues of the Fokker-Planck operator and its eigenfunctions at the boundaries are derived without resorting to integral expressions. For the leaky integrate-and-fire neurons, the coupling terms between stationary and nonstationary modes are also worked out paving the way to accurately characterize the critical points and the relaxation timescales in networks of interacting populations.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"166 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rosetta stone for the population dynamics of spiking neuron networks\",\"authors\":\"Gianni V. Vinci, Maurizio Mattia\",\"doi\":\"10.1103/physreve.110.034303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Populations of spiking neuron models have densities of their microscopic variables (e.g., single-cell membrane potentials) whose evolution fully capture the collective dynamics of biological networks, even outside equilibrium. Despite its general applicability, the Fokker-Planck equation governing such evolution is mainly studied within the borders of the linear response theory, although alternative spectral expansion approaches offer some advantages in the study of the out-of-equilibrium dynamics. This is mainly due to the difficulty in computing the state-dependent coefficients of the expanded system of differential equations. Here, we address this issue by deriving analytic expressions for such coefficients by pairing perturbative solutions of the Fokker-Planck approach with their counterparts from the spectral expansion. A tight relationship emerges between several of these coefficients and the Laplace transform of the interspike interval density (i.e., the distribution of first-passage times). “Coefficients” like the current-to-rate gain function, the eigenvalues of the Fokker-Planck operator and its eigenfunctions at the boundaries are derived without resorting to integral expressions. For the leaky integrate-and-fire neurons, the coupling terms between stationary and nonstationary modes are also worked out paving the way to accurately characterize the critical points and the relaxation timescales in networks of interacting populations.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034303\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034303","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Rosetta stone for the population dynamics of spiking neuron networks
Populations of spiking neuron models have densities of their microscopic variables (e.g., single-cell membrane potentials) whose evolution fully capture the collective dynamics of biological networks, even outside equilibrium. Despite its general applicability, the Fokker-Planck equation governing such evolution is mainly studied within the borders of the linear response theory, although alternative spectral expansion approaches offer some advantages in the study of the out-of-equilibrium dynamics. This is mainly due to the difficulty in computing the state-dependent coefficients of the expanded system of differential equations. Here, we address this issue by deriving analytic expressions for such coefficients by pairing perturbative solutions of the Fokker-Planck approach with their counterparts from the spectral expansion. A tight relationship emerges between several of these coefficients and the Laplace transform of the interspike interval density (i.e., the distribution of first-passage times). “Coefficients” like the current-to-rate gain function, the eigenvalues of the Fokker-Planck operator and its eigenfunctions at the boundaries are derived without resorting to integral expressions. For the leaky integrate-and-fire neurons, the coupling terms between stationary and nonstationary modes are also worked out paving the way to accurately characterize the critical points and the relaxation timescales in networks of interacting populations.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.