流经矩形水道的波瓦耶水流中的主动颗粒运动

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Rahil N. Valani, Brendan Harding, Yvonne M. Stokes
{"title":"流经矩形水道的波瓦耶水流中的主动颗粒运动","authors":"Rahil N. Valani, Brendan Harding, Yvonne M. Stokes","doi":"10.1103/physreve.110.034603","DOIUrl":null,"url":null,"abstract":"We investigate the dynamics of a pointlike active particle suspended in fluid flow through a straight channel. For this particle-fluid system, we derive a constant of motion for a general unidirectional fluid flow and apply it to an approximation of Poiseuille flow through channels with rectangular cross- sections. We obtain a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>4</mn><mi mathvariant=\"normal\">D</mi></mrow></math> nonlinear conservative dynamical system with one constant of motion and a dimensionless parameter describing the ratio of maximum flow speed to intrinsic active particle speed. Applied to square channels, we observe a diverse set of active particle trajectories with variations in system parameters and initial conditions which we classify into different types of swinging, trapping, tumbling, and wandering motion. Regular (periodic and quasiperiodic) motion as well as chaotic active particle motion are observed for these trajectories and quantified using largest Lyapunov exponents. We explore the transition to chaotic motion using Poincaré maps and show “sticky” chaotic tumbling trajectories that have long transients near a periodic state. We briefly illustrate how these results extend to rectangular cross-sections with a width-to-height ratio larger than one. Outcomes of this paper may have implications for dynamics of natural and artificial microswimmers in experimental microfluidic channels that typically have rectangular cross sections.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"6 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active particle motion in Poiseuille flow through rectangular channels\",\"authors\":\"Rahil N. Valani, Brendan Harding, Yvonne M. Stokes\",\"doi\":\"10.1103/physreve.110.034603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the dynamics of a pointlike active particle suspended in fluid flow through a straight channel. For this particle-fluid system, we derive a constant of motion for a general unidirectional fluid flow and apply it to an approximation of Poiseuille flow through channels with rectangular cross- sections. We obtain a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>4</mn><mi mathvariant=\\\"normal\\\">D</mi></mrow></math> nonlinear conservative dynamical system with one constant of motion and a dimensionless parameter describing the ratio of maximum flow speed to intrinsic active particle speed. Applied to square channels, we observe a diverse set of active particle trajectories with variations in system parameters and initial conditions which we classify into different types of swinging, trapping, tumbling, and wandering motion. Regular (periodic and quasiperiodic) motion as well as chaotic active particle motion are observed for these trajectories and quantified using largest Lyapunov exponents. We explore the transition to chaotic motion using Poincaré maps and show “sticky” chaotic tumbling trajectories that have long transients near a periodic state. We briefly illustrate how these results extend to rectangular cross-sections with a width-to-height ratio larger than one. Outcomes of this paper may have implications for dynamics of natural and artificial microswimmers in experimental microfluidic channels that typically have rectangular cross sections.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034603\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034603","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了悬浮于流体中的点状活性粒子在直槽中的动力学。对于这个粒子-流体系统,我们推导出了一般单向流体流动的运动常数,并将其应用于矩形截面通道中的近似普瓦休耶(Poiseuille)流。我们得到了一个 4D 非线性保守动力系统,该系统具有一个运动常数和一个无量纲参数,该参数描述了最大流速与固有活动粒子速度之比。在方形水道中,我们观察到了多种多样的活动粒子轨迹,这些轨迹随着系统参数和初始条件的变化而变化,我们将其分为摆动、捕获、翻滚和徘徊等不同类型的运动。我们观察到了这些轨迹的规则(周期和准周期)运动以及混乱的主动粒子运动,并使用最大的 Lyapunov 指数对其进行量化。我们利用波恩卡雷图探索了向混沌运动的过渡,并展示了在周期状态附近具有较长瞬态的 "粘性 "混沌翻滚轨迹。我们简要说明了这些结果如何扩展到宽高比大于 1 的矩形截面。本文的结果可能会对通常具有矩形横截面的实验微流体通道中的天然和人工微泳者的动力学产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Active particle motion in Poiseuille flow through rectangular channels

Active particle motion in Poiseuille flow through rectangular channels
We investigate the dynamics of a pointlike active particle suspended in fluid flow through a straight channel. For this particle-fluid system, we derive a constant of motion for a general unidirectional fluid flow and apply it to an approximation of Poiseuille flow through channels with rectangular cross- sections. We obtain a 4D nonlinear conservative dynamical system with one constant of motion and a dimensionless parameter describing the ratio of maximum flow speed to intrinsic active particle speed. Applied to square channels, we observe a diverse set of active particle trajectories with variations in system parameters and initial conditions which we classify into different types of swinging, trapping, tumbling, and wandering motion. Regular (periodic and quasiperiodic) motion as well as chaotic active particle motion are observed for these trajectories and quantified using largest Lyapunov exponents. We explore the transition to chaotic motion using Poincaré maps and show “sticky” chaotic tumbling trajectories that have long transients near a periodic state. We briefly illustrate how these results extend to rectangular cross-sections with a width-to-height ratio larger than one. Outcomes of this paper may have implications for dynamics of natural and artificial microswimmers in experimental microfluidic channels that typically have rectangular cross sections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信