{"title":"量子迁移及其对局部热量的影响了解密闭系统的局部热容量","authors":"Altug Sisman, Jonas Fransson","doi":"10.1103/physreve.110.034112","DOIUrl":null,"url":null,"abstract":"For noninteracting particles confined in a constant volume, the temperature derivative of the local energy assumes negative values in thermodynamic equilibrium at low temperatures. This peculiar behavior may entail the misleading unphysical conclusion that the local heat capacity is negative. However, we show that temperature-dependent density variations of confined particles induce an energy selective particle transport within the domain, here called <i>temperature-induced quantum migration</i>. This macroscopic quantum phenomenon causes a redistribution of local heat and ensures a non-negative local heat capacity. Moreover, it induces local heating and cooling effects and a massive overshoot in local heat capacity. The quantum migration also builds up the thermal part of confinement energy, manifesting in an excess global heat capacity. Analyzing the local energy fluctuations shows that the linear relationship between heat capacity and fluctuations is broken at the local scale.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum migration and its local heat impact: Understanding local heat capacity of confined systems\",\"authors\":\"Altug Sisman, Jonas Fransson\",\"doi\":\"10.1103/physreve.110.034112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For noninteracting particles confined in a constant volume, the temperature derivative of the local energy assumes negative values in thermodynamic equilibrium at low temperatures. This peculiar behavior may entail the misleading unphysical conclusion that the local heat capacity is negative. However, we show that temperature-dependent density variations of confined particles induce an energy selective particle transport within the domain, here called <i>temperature-induced quantum migration</i>. This macroscopic quantum phenomenon causes a redistribution of local heat and ensures a non-negative local heat capacity. Moreover, it induces local heating and cooling effects and a massive overshoot in local heat capacity. The quantum migration also builds up the thermal part of confinement energy, manifesting in an excess global heat capacity. Analyzing the local energy fluctuations shows that the linear relationship between heat capacity and fluctuations is broken at the local scale.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034112\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034112","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Quantum migration and its local heat impact: Understanding local heat capacity of confined systems
For noninteracting particles confined in a constant volume, the temperature derivative of the local energy assumes negative values in thermodynamic equilibrium at low temperatures. This peculiar behavior may entail the misleading unphysical conclusion that the local heat capacity is negative. However, we show that temperature-dependent density variations of confined particles induce an energy selective particle transport within the domain, here called temperature-induced quantum migration. This macroscopic quantum phenomenon causes a redistribution of local heat and ensures a non-negative local heat capacity. Moreover, it induces local heating and cooling effects and a massive overshoot in local heat capacity. The quantum migration also builds up the thermal part of confinement energy, manifesting in an excess global heat capacity. Analyzing the local energy fluctuations shows that the linear relationship between heat capacity and fluctuations is broken at the local scale.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.