在复杂等离子体中观测勒萨奇引力模拟物

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Andrey V. Zobnin, Andrey M. Lipaev, Roman A. Syrovatka, Alexandr D. Usachev, Vadim N. Naumkin, Oleg F. Petrov, Markus H. Thoma, Oleg V. Novitsky, Sergey N. Ryzhikov
{"title":"在复杂等离子体中观测勒萨奇引力模拟物","authors":"Andrey V. Zobnin, Andrey M. Lipaev, Roman A. Syrovatka, Alexandr D. Usachev, Vadim N. Naumkin, Oleg F. Petrov, Markus H. Thoma, Oleg V. Novitsky, Sergey N. Ryzhikov","doi":"10.1103/physreve.110.035203","DOIUrl":null,"url":null,"abstract":"Fragmentation of a suspension of micron-sized plastic microparticles and their contraction into dense globules was experimentally obtained in a gas discharge plasma, when the plasma density was deliberately and abruptly increased. The globules took up spherical shapes 0.14–1.1 mm in diameters and contained from tens to thousands microparticles. The fragmentation and globule formation appears to be similar to the development of gravitational instability. This process is attributed to the Le Sage's like attraction among microparticles in a dense plasma due to the plasma losses inside a globule hypothesized theoretically in the middle of the 1990s. The key role of plasma flows in the attraction was prominently demonstrated in the same experiment by the distinctly visible disintegration of the globules when we reduced the density of the surrounding plasma to the initial one. Also molecular dynamics simulations of fragmentation of microparticle clouds and globules formation qualitatively resemble typical patterns of the fragmentation and collapse of interstellar nebulae.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of Le Sage gravity analog in complex plasma\",\"authors\":\"Andrey V. Zobnin, Andrey M. Lipaev, Roman A. Syrovatka, Alexandr D. Usachev, Vadim N. Naumkin, Oleg F. Petrov, Markus H. Thoma, Oleg V. Novitsky, Sergey N. Ryzhikov\",\"doi\":\"10.1103/physreve.110.035203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fragmentation of a suspension of micron-sized plastic microparticles and their contraction into dense globules was experimentally obtained in a gas discharge plasma, when the plasma density was deliberately and abruptly increased. The globules took up spherical shapes 0.14–1.1 mm in diameters and contained from tens to thousands microparticles. The fragmentation and globule formation appears to be similar to the development of gravitational instability. This process is attributed to the Le Sage's like attraction among microparticles in a dense plasma due to the plasma losses inside a globule hypothesized theoretically in the middle of the 1990s. The key role of plasma flows in the attraction was prominently demonstrated in the same experiment by the distinctly visible disintegration of the globules when we reduced the density of the surrounding plasma to the initial one. Also molecular dynamics simulations of fragmentation of microparticle clouds and globules formation qualitatively resemble typical patterns of the fragmentation and collapse of interstellar nebulae.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.035203\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.035203","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在气体放电等离子体中,当等离子体密度被有意地突然增加时,微米级塑料微粒悬浮液碎裂并收缩成致密的球状。球体呈球形,直径为 0.14-1.1 毫米,包含数以万计的微颗粒。碎裂和球状物的形成似乎与引力不稳定性的发展相似。这一过程归因于 20 世纪 90 年代中期理论上假设的球体内等离子体损耗导致的稠密等离子体中微粒子之间类似勒萨奇的吸引力。在同一实验中,当我们将周围等离子体的密度降低到初始密度时,球状微粒会发生明显可见的解体,这充分证明了等离子体流在吸引力中的关键作用。此外,微粒子云的碎裂和球状物形成的分子动力学模拟与星际星云碎裂和坍缩的典型模式非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observation of Le Sage gravity analog in complex plasma

Observation of Le Sage gravity analog in complex plasma
Fragmentation of a suspension of micron-sized plastic microparticles and their contraction into dense globules was experimentally obtained in a gas discharge plasma, when the plasma density was deliberately and abruptly increased. The globules took up spherical shapes 0.14–1.1 mm in diameters and contained from tens to thousands microparticles. The fragmentation and globule formation appears to be similar to the development of gravitational instability. This process is attributed to the Le Sage's like attraction among microparticles in a dense plasma due to the plasma losses inside a globule hypothesized theoretically in the middle of the 1990s. The key role of plasma flows in the attraction was prominently demonstrated in the same experiment by the distinctly visible disintegration of the globules when we reduced the density of the surrounding plasma to the initial one. Also molecular dynamics simulations of fragmentation of microparticle clouds and globules formation qualitatively resemble typical patterns of the fragmentation and collapse of interstellar nebulae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信