{"title":"二方网络中的高阶交互诱导嵌合态","authors":"Rumi Kar, V. K. Chandrasekar, D. V. Senthilkumar","doi":"10.1103/physreve.110.034205","DOIUrl":null,"url":null,"abstract":"We report higher-order coupling induced stable chimeralike state in a bipartite network of coupled phase oscillators without any time-delay in the coupling. We show that the higher-order interaction breaks the symmetry of the homogeneous synchronized state to facilitate the manifestation of symmetry breaking chimeralike state. In particular, such symmetry breaking manifests only when the pairwise interaction is attractive and higher-order interaction is repulsive, and vice versa. Further, we also demonstrate the increased degree of heterogeneity promotes homogeneous symmetric states in the phase diagram by suppressing the asymmetric chimeralike state. We deduce the low-dimensional evolution equations for the macroscopic order parameters using Ott-Antonsen ansatz and obtain the bifurcation curves from them using the software <span>xppaut</span>, which agrees very well with the simulation results. We also deduce the analytical stability conditions for the incoherent state, in-phase and out-of-phase synchronized states, which match with the bifurcation curves.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order interaction induced chimeralike state in a bipartite network\",\"authors\":\"Rumi Kar, V. K. Chandrasekar, D. V. Senthilkumar\",\"doi\":\"10.1103/physreve.110.034205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report higher-order coupling induced stable chimeralike state in a bipartite network of coupled phase oscillators without any time-delay in the coupling. We show that the higher-order interaction breaks the symmetry of the homogeneous synchronized state to facilitate the manifestation of symmetry breaking chimeralike state. In particular, such symmetry breaking manifests only when the pairwise interaction is attractive and higher-order interaction is repulsive, and vice versa. Further, we also demonstrate the increased degree of heterogeneity promotes homogeneous symmetric states in the phase diagram by suppressing the asymmetric chimeralike state. We deduce the low-dimensional evolution equations for the macroscopic order parameters using Ott-Antonsen ansatz and obtain the bifurcation curves from them using the software <span>xppaut</span>, which agrees very well with the simulation results. We also deduce the analytical stability conditions for the incoherent state, in-phase and out-of-phase synchronized states, which match with the bifurcation curves.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034205\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034205","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Higher-order interaction induced chimeralike state in a bipartite network
We report higher-order coupling induced stable chimeralike state in a bipartite network of coupled phase oscillators without any time-delay in the coupling. We show that the higher-order interaction breaks the symmetry of the homogeneous synchronized state to facilitate the manifestation of symmetry breaking chimeralike state. In particular, such symmetry breaking manifests only when the pairwise interaction is attractive and higher-order interaction is repulsive, and vice versa. Further, we also demonstrate the increased degree of heterogeneity promotes homogeneous symmetric states in the phase diagram by suppressing the asymmetric chimeralike state. We deduce the low-dimensional evolution equations for the macroscopic order parameters using Ott-Antonsen ansatz and obtain the bifurcation curves from them using the software xppaut, which agrees very well with the simulation results. We also deduce the analytical stability conditions for the incoherent state, in-phase and out-of-phase synchronized states, which match with the bifurcation curves.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.