基于 SMS 纤维结构的表面张力外力感应策略

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chuan Tian;Xuening Chen;Yaqi Ren;Meng Wang;Xiaolei Bai
{"title":"基于 SMS 纤维结构的表面张力外力感应策略","authors":"Chuan Tian;Xuening Chen;Yaqi Ren;Meng Wang;Xiaolei Bai","doi":"10.1109/LPT.2024.3442229","DOIUrl":null,"url":null,"abstract":"An external force sensing strategy based on the bend and strain characteristics of SMS fiber structure for liquid surface tension is demonstrated in this work. The bent SMS fiber structure is used to optimize the traditional pull-off method by improving the measurement of the tensile force. Experimental results show that the sensitivity of the sensor is 1.97221 nm/mN, suitable for measuring small tensile forces, with the minimum force change of \n<inline-formula> <tex-math>$10.1409~\\mu $ </tex-math></inline-formula>\n N and the linearity of 99.85%. The maximum relative error of LSTC is \n<inline-formula> <tex-math>$\\pm 0.282\\times 10^{-3}$ </tex-math></inline-formula>\n N/m. Theoretical and experimental results prove that using a bent SMS fiber structure is a feasible approach for accurately measuring liquid surface tension.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 19","pages":"1197-1200"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"External Force Sensing Strategy for Surface Tension Based on SMS Fiber Structure\",\"authors\":\"Chuan Tian;Xuening Chen;Yaqi Ren;Meng Wang;Xiaolei Bai\",\"doi\":\"10.1109/LPT.2024.3442229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An external force sensing strategy based on the bend and strain characteristics of SMS fiber structure for liquid surface tension is demonstrated in this work. The bent SMS fiber structure is used to optimize the traditional pull-off method by improving the measurement of the tensile force. Experimental results show that the sensitivity of the sensor is 1.97221 nm/mN, suitable for measuring small tensile forces, with the minimum force change of \\n<inline-formula> <tex-math>$10.1409~\\\\mu $ </tex-math></inline-formula>\\n N and the linearity of 99.85%. The maximum relative error of LSTC is \\n<inline-formula> <tex-math>$\\\\pm 0.282\\\\times 10^{-3}$ </tex-math></inline-formula>\\n N/m. Theoretical and experimental results prove that using a bent SMS fiber structure is a feasible approach for accurately measuring liquid surface tension.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"36 19\",\"pages\":\"1197-1200\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10634214/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10634214/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了一种基于 SMS 纤维结构弯曲和应变特性的液体表面张力外力传感策略。利用弯曲的 SMS 纤维结构优化了传统的拉力测量方法。实验结果表明,传感器的灵敏度为 1.97221 nm/mN,适合测量较小的拉力,最小力变化为 10.1409~\mu $ N,线性度为 99.85%。LSTC 的最大相对误差为 0.282 times 10^{-3}$ N/m。理论和实验结果证明,使用弯曲的 SMS 纤维结构精确测量液体表面张力是一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
External Force Sensing Strategy for Surface Tension Based on SMS Fiber Structure
An external force sensing strategy based on the bend and strain characteristics of SMS fiber structure for liquid surface tension is demonstrated in this work. The bent SMS fiber structure is used to optimize the traditional pull-off method by improving the measurement of the tensile force. Experimental results show that the sensitivity of the sensor is 1.97221 nm/mN, suitable for measuring small tensile forces, with the minimum force change of $10.1409~\mu $ N and the linearity of 99.85%. The maximum relative error of LSTC is $\pm 0.282\times 10^{-3}$ N/m. Theoretical and experimental results prove that using a bent SMS fiber structure is a feasible approach for accurately measuring liquid surface tension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信