{"title":"采用强力光纤熔接技术的光纤到芯片封装,适用于低温应用","authors":"Aaron Hutchins;David Reens;Dave Kharas;Gavin N. West;Cheryl Sorace-Agaskar;John Chiaverini;Robert McConnell;Reuel Swint;Opeyemi Akanbi;Shannon Harding;Wei Guo","doi":"10.1109/LPT.2024.3452039","DOIUrl":null,"url":null,"abstract":"Photonic Integrated Circuits (PICs) have emerged as a promising technology to support applications including datacom, AI, RF signal processing, and quantum computing and sensing. A critical aspect of PIC-based systems is the ability to transmit optical signals between chips, which requires a low-loss, robust interface between the PIC-chip and optical fiber. Here we present a thorough examination of a fiber fusion attachment process to create such an interface. The process used a CO2 laser to heat and fuse the fiber to a silicon nitride chip and achieved a measured coupling loss of ~2.45 dB/facet for 1550 nm light, which represents a reduction in loss of 0.5dB/facet from prior to the fusion splice being formed. A force sensor was integrated into the fusion splicing process to allow for quantitative analysis of splicing conditions. Additionally, the robustness of the fusion splicing process was demonstrated by repeated temperature cycling of a spliced chip between 193 K and 293 K led to an increase in loss of only 0.3 dB after five cycles.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 19","pages":"1209-1212"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fiber-to-Chip Packaging With Robust Fiber Fusion Splicing for Low-Temperature Applications\",\"authors\":\"Aaron Hutchins;David Reens;Dave Kharas;Gavin N. West;Cheryl Sorace-Agaskar;John Chiaverini;Robert McConnell;Reuel Swint;Opeyemi Akanbi;Shannon Harding;Wei Guo\",\"doi\":\"10.1109/LPT.2024.3452039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photonic Integrated Circuits (PICs) have emerged as a promising technology to support applications including datacom, AI, RF signal processing, and quantum computing and sensing. A critical aspect of PIC-based systems is the ability to transmit optical signals between chips, which requires a low-loss, robust interface between the PIC-chip and optical fiber. Here we present a thorough examination of a fiber fusion attachment process to create such an interface. The process used a CO2 laser to heat and fuse the fiber to a silicon nitride chip and achieved a measured coupling loss of ~2.45 dB/facet for 1550 nm light, which represents a reduction in loss of 0.5dB/facet from prior to the fusion splice being formed. A force sensor was integrated into the fusion splicing process to allow for quantitative analysis of splicing conditions. Additionally, the robustness of the fusion splicing process was demonstrated by repeated temperature cycling of a spliced chip between 193 K and 293 K led to an increase in loss of only 0.3 dB after five cycles.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"36 19\",\"pages\":\"1209-1212\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10659019/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10659019/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
光子集成电路(PIC)已成为支持数据通信、人工智能、射频信号处理以及量子计算和传感等应用的一项前景广阔的技术。基于 PIC 的系统的一个关键方面是芯片之间传输光信号的能力,这就需要在 PIC 芯片和光纤之间建立一个低损耗、坚固耐用的接口。在此,我们对光纤熔接工艺进行了深入研究,以创建这样的接口。该工艺使用二氧化碳激光器将光纤加热并熔接到氮化硅芯片上,1550 nm 光的耦合损耗测量值约为 2.45 dB/facet,与熔接前相比,损耗降低了 0.5dB/facet。熔接过程中集成了力传感器,可对熔接条件进行定量分析。此外,通过在 193 K 和 293 K 之间反复循环拼接芯片的温度,证明了融合拼接过程的稳健性,经过五个循环后,损耗仅增加了 0.3 分贝。
Fiber-to-Chip Packaging With Robust Fiber Fusion Splicing for Low-Temperature Applications
Photonic Integrated Circuits (PICs) have emerged as a promising technology to support applications including datacom, AI, RF signal processing, and quantum computing and sensing. A critical aspect of PIC-based systems is the ability to transmit optical signals between chips, which requires a low-loss, robust interface between the PIC-chip and optical fiber. Here we present a thorough examination of a fiber fusion attachment process to create such an interface. The process used a CO2 laser to heat and fuse the fiber to a silicon nitride chip and achieved a measured coupling loss of ~2.45 dB/facet for 1550 nm light, which represents a reduction in loss of 0.5dB/facet from prior to the fusion splice being formed. A force sensor was integrated into the fusion splicing process to allow for quantitative analysis of splicing conditions. Additionally, the robustness of the fusion splicing process was demonstrated by repeated temperature cycling of a spliced chip between 193 K and 293 K led to an increase in loss of only 0.3 dB after five cycles.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.