Witold Maćków, Malwina Bondarewicz, Andrzej Łysko, Paweł Terefenko
{"title":"基于正射影像的植被斑块分析--评估分割质量的新方法","authors":"Witold Maćków, Malwina Bondarewicz, Andrzej Łysko, Paweł Terefenko","doi":"10.3390/rs16173344","DOIUrl":null,"url":null,"abstract":"The following paper focuses on evaluating the quality of image prediction in the context of searching for plants of a single species, using the example of Heracleum sosnowskyi Manden, in a given area. This process involves a simplified classification that ends with a segmentation step. Because of the particular characteristics of environmental data, such as large areas of plant occurrence, significant partitioning of the population, or characteristics of a single individual, the use of standard statistical measures such as Accuracy, the Jaccard Index, or Dice Coefficient does not produce reliable results, as shown later in this study. This issue demonstrates the need for a new method for assessing the betted prediction quality adapted to the unique characteristics of vegetation patch detection. The main aim of this study is to provide such a metric and demonstrate its usefulness in the cases discussed. Our proposed metric introduces two new coefficients, M+ and M−, which, respectively, reward true positive regions and penalise false positive regions, thus providing a more nuanced assessment of segmentation quality. The effectiveness of this metric has been demonstrated in different scenarios focusing on variations in spatial distribution and fragmentation of theoretical vegetation patches, comparing the proposed new method with traditional metrics. The results indicate that our metric offers a more flexible and accurate assessment of segmentation quality, especially in cases involving complex environmental data. This study aims to demonstrate the usefulness and applicability of the metric in real-world vegetation patch detection tasks.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"43 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthophoto-Based Vegetation Patch Analyses—A New Approach to Assess Segmentation Quality\",\"authors\":\"Witold Maćków, Malwina Bondarewicz, Andrzej Łysko, Paweł Terefenko\",\"doi\":\"10.3390/rs16173344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following paper focuses on evaluating the quality of image prediction in the context of searching for plants of a single species, using the example of Heracleum sosnowskyi Manden, in a given area. This process involves a simplified classification that ends with a segmentation step. Because of the particular characteristics of environmental data, such as large areas of plant occurrence, significant partitioning of the population, or characteristics of a single individual, the use of standard statistical measures such as Accuracy, the Jaccard Index, or Dice Coefficient does not produce reliable results, as shown later in this study. This issue demonstrates the need for a new method for assessing the betted prediction quality adapted to the unique characteristics of vegetation patch detection. The main aim of this study is to provide such a metric and demonstrate its usefulness in the cases discussed. Our proposed metric introduces two new coefficients, M+ and M−, which, respectively, reward true positive regions and penalise false positive regions, thus providing a more nuanced assessment of segmentation quality. The effectiveness of this metric has been demonstrated in different scenarios focusing on variations in spatial distribution and fragmentation of theoretical vegetation patches, comparing the proposed new method with traditional metrics. The results indicate that our metric offers a more flexible and accurate assessment of segmentation quality, especially in cases involving complex environmental data. This study aims to demonstrate the usefulness and applicability of the metric in real-world vegetation patch detection tasks.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16173344\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16173344","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Orthophoto-Based Vegetation Patch Analyses—A New Approach to Assess Segmentation Quality
The following paper focuses on evaluating the quality of image prediction in the context of searching for plants of a single species, using the example of Heracleum sosnowskyi Manden, in a given area. This process involves a simplified classification that ends with a segmentation step. Because of the particular characteristics of environmental data, such as large areas of plant occurrence, significant partitioning of the population, or characteristics of a single individual, the use of standard statistical measures such as Accuracy, the Jaccard Index, or Dice Coefficient does not produce reliable results, as shown later in this study. This issue demonstrates the need for a new method for assessing the betted prediction quality adapted to the unique characteristics of vegetation patch detection. The main aim of this study is to provide such a metric and demonstrate its usefulness in the cases discussed. Our proposed metric introduces two new coefficients, M+ and M−, which, respectively, reward true positive regions and penalise false positive regions, thus providing a more nuanced assessment of segmentation quality. The effectiveness of this metric has been demonstrated in different scenarios focusing on variations in spatial distribution and fragmentation of theoretical vegetation patches, comparing the proposed new method with traditional metrics. The results indicate that our metric offers a more flexible and accurate assessment of segmentation quality, especially in cases involving complex environmental data. This study aims to demonstrate the usefulness and applicability of the metric in real-world vegetation patch detection tasks.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.