{"title":"三个植物乳杆菌菌株的全基因组测序揭示了安全提高宿主免疫力的潜在代谢物。","authors":"I-Chen Li,Yueh-Lun Lee,Tsung-Ju Li,You-Shan Tsai,Yen-Lien Chen,Chin-Chu Chen","doi":"10.4014/jmb.2402.02013","DOIUrl":null,"url":null,"abstract":"In response to the growing demand for immune-related products, this study evaluated the safety and immune-modulating potential of three newly discovered Lactiplantibacillus plantarum strains (GKM3, GKK1, and GKD7) through toxicity tests and whole-genome sequencing. Safety evaluations, including the analysis of antimicrobial resistance genes, virulence factors, plasmids, and prophages, classified these strains as safe for human consumption. Acute oral toxicity tests further supported their safety. To evaluate their immune-modulating potential, dendritic cells were exposed to these strains, and the secretion of key cytokines (IFN-β and IL-12) was measured. Among the strains, GKK1 exhibited the highest enhancement of IFN-β and IL-12 production, suggesting its potential as an immune-stimulating probiotic. Bioinformatics analysis revealed potential metabolic pathways and secondary metabolites, including predicted bacteriocins, associated with immune modulation. The presence of a nitrate reductase region in the GKK1 strain indicated its ability to produce nitric oxide, a critical molecule involved in immune regulation and host defense. The presence of glucorhamnanrelated gene clusters in GKK1 also suggested immune-enhancing effects. Nitrate reductase expression was confirmed using qPCR, with the highest levels detected in GKK1. Moreover, this study is the first to show an anti-inflammatory effect of plantaricin A, linked to its presence in strain GKM3 and its potential therapeutic applications due to sequence similarity to known antiinflammatory peptides. Overall, these three L. plantarum strains demonstrated a safe profile and GKK1 showed potential as an immunity-enhancing probiotic. However, additional investigation is required to confirm the involvement of specific metabolic pathways, secondary metabolites, and bacteriocins in immune responses.","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"24 1","pages":"1-10"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole-Genome Sequencing of Three Lactiplantibacillus plantarum Strains Reveals Potential Metabolites for Boosting Host Immunity Safely.\",\"authors\":\"I-Chen Li,Yueh-Lun Lee,Tsung-Ju Li,You-Shan Tsai,Yen-Lien Chen,Chin-Chu Chen\",\"doi\":\"10.4014/jmb.2402.02013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the growing demand for immune-related products, this study evaluated the safety and immune-modulating potential of three newly discovered Lactiplantibacillus plantarum strains (GKM3, GKK1, and GKD7) through toxicity tests and whole-genome sequencing. Safety evaluations, including the analysis of antimicrobial resistance genes, virulence factors, plasmids, and prophages, classified these strains as safe for human consumption. Acute oral toxicity tests further supported their safety. To evaluate their immune-modulating potential, dendritic cells were exposed to these strains, and the secretion of key cytokines (IFN-β and IL-12) was measured. Among the strains, GKK1 exhibited the highest enhancement of IFN-β and IL-12 production, suggesting its potential as an immune-stimulating probiotic. Bioinformatics analysis revealed potential metabolic pathways and secondary metabolites, including predicted bacteriocins, associated with immune modulation. The presence of a nitrate reductase region in the GKK1 strain indicated its ability to produce nitric oxide, a critical molecule involved in immune regulation and host defense. The presence of glucorhamnanrelated gene clusters in GKK1 also suggested immune-enhancing effects. Nitrate reductase expression was confirmed using qPCR, with the highest levels detected in GKK1. Moreover, this study is the first to show an anti-inflammatory effect of plantaricin A, linked to its presence in strain GKM3 and its potential therapeutic applications due to sequence similarity to known antiinflammatory peptides. Overall, these three L. plantarum strains demonstrated a safe profile and GKK1 showed potential as an immunity-enhancing probiotic. However, additional investigation is required to confirm the involvement of specific metabolic pathways, secondary metabolites, and bacteriocins in immune responses.\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":\"24 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2402.02013\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2402.02013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Whole-Genome Sequencing of Three Lactiplantibacillus plantarum Strains Reveals Potential Metabolites for Boosting Host Immunity Safely.
In response to the growing demand for immune-related products, this study evaluated the safety and immune-modulating potential of three newly discovered Lactiplantibacillus plantarum strains (GKM3, GKK1, and GKD7) through toxicity tests and whole-genome sequencing. Safety evaluations, including the analysis of antimicrobial resistance genes, virulence factors, plasmids, and prophages, classified these strains as safe for human consumption. Acute oral toxicity tests further supported their safety. To evaluate their immune-modulating potential, dendritic cells were exposed to these strains, and the secretion of key cytokines (IFN-β and IL-12) was measured. Among the strains, GKK1 exhibited the highest enhancement of IFN-β and IL-12 production, suggesting its potential as an immune-stimulating probiotic. Bioinformatics analysis revealed potential metabolic pathways and secondary metabolites, including predicted bacteriocins, associated with immune modulation. The presence of a nitrate reductase region in the GKK1 strain indicated its ability to produce nitric oxide, a critical molecule involved in immune regulation and host defense. The presence of glucorhamnanrelated gene clusters in GKK1 also suggested immune-enhancing effects. Nitrate reductase expression was confirmed using qPCR, with the highest levels detected in GKK1. Moreover, this study is the first to show an anti-inflammatory effect of plantaricin A, linked to its presence in strain GKM3 and its potential therapeutic applications due to sequence similarity to known antiinflammatory peptides. Overall, these three L. plantarum strains demonstrated a safe profile and GKK1 showed potential as an immunity-enhancing probiotic. However, additional investigation is required to confirm the involvement of specific metabolic pathways, secondary metabolites, and bacteriocins in immune responses.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.