实空间重正化群映射的忠实性

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Katsuya O. Akamatsu, Naoki Kawashima
{"title":"实空间重正化群映射的忠实性","authors":"Katsuya O. Akamatsu,&nbsp;Naoki Kawashima","doi":"10.1007/s10955-024-03323-7","DOIUrl":null,"url":null,"abstract":"<div><p>The behavior of <span>\\(b=2\\)</span> real-space renormalization group (RSRG) maps like the majority rule and the decimation map was examined by numerically applying RSRG steps to critical <span>\\(q=2,3,4\\)</span> Potts spin configurations. While the majority rule is generally believed to work well, a more thorough investigation of the action of the map has yet to be considered in the literature. When fixing the size of the renormalized lattice <span>\\(L_g\\)</span> and allowing the source configuration size <span>\\(L_0\\)</span> to vary, we observed that the RG flow of the spin and energy correlation under the majority rule map appear to converge to a nontrivial model-dependent curve. We denote this property as “faithfulness”, because it implies that some information remains preserved by RSRG maps that fall under this class. Furthermore, we show that <span>\\(b=2\\)</span> weighted majority-like RSRG maps acting on the <span>\\(q=2\\)</span> Potts model can be divided into two categories, maps that behave like decimation and maps that behave like the majority rule.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 9","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03323-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Faithfulness of Real-Space Renormalization Group Maps\",\"authors\":\"Katsuya O. Akamatsu,&nbsp;Naoki Kawashima\",\"doi\":\"10.1007/s10955-024-03323-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The behavior of <span>\\\\(b=2\\\\)</span> real-space renormalization group (RSRG) maps like the majority rule and the decimation map was examined by numerically applying RSRG steps to critical <span>\\\\(q=2,3,4\\\\)</span> Potts spin configurations. While the majority rule is generally believed to work well, a more thorough investigation of the action of the map has yet to be considered in the literature. When fixing the size of the renormalized lattice <span>\\\\(L_g\\\\)</span> and allowing the source configuration size <span>\\\\(L_0\\\\)</span> to vary, we observed that the RG flow of the spin and energy correlation under the majority rule map appear to converge to a nontrivial model-dependent curve. We denote this property as “faithfulness”, because it implies that some information remains preserved by RSRG maps that fall under this class. Furthermore, we show that <span>\\\\(b=2\\\\)</span> weighted majority-like RSRG maps acting on the <span>\\\\(q=2\\\\)</span> Potts model can be divided into two categories, maps that behave like decimation and maps that behave like the majority rule.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"191 9\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10955-024-03323-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-024-03323-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03323-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过对临界(q=2,3,4)波茨自旋构型数值地应用RSRG步骤,研究了像(b=2)多数规则和(b=2,3,4)衰减图这样的实空间重正化群(RSRG)图的行为。虽然人们普遍认为多数规则运行良好,但文献中尚未对该图的作用进行更深入的研究。当固定重规范化晶格的大小\(L_g\)并允许源构型大小\(L_0\)变化时,我们观察到多数规则映射下的自旋和能量相关的RG流似乎收敛到了一条与模型无关的曲线。我们把这一特性称为 "忠实性",因为它意味着属于这一类的 RSRG 地图仍然保留了一些信息。此外,我们还证明了作用于波特斯模型的(b=2)加权多数规则RSRG映射可以分为两类,一类是行为类似于 "去除"(decimation)的映射,另一类是行为类似于 "多数规则"(majority rule)的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Faithfulness of Real-Space Renormalization Group Maps

Faithfulness of Real-Space Renormalization Group Maps

The behavior of \(b=2\) real-space renormalization group (RSRG) maps like the majority rule and the decimation map was examined by numerically applying RSRG steps to critical \(q=2,3,4\) Potts spin configurations. While the majority rule is generally believed to work well, a more thorough investigation of the action of the map has yet to be considered in the literature. When fixing the size of the renormalized lattice \(L_g\) and allowing the source configuration size \(L_0\) to vary, we observed that the RG flow of the spin and energy correlation under the majority rule map appear to converge to a nontrivial model-dependent curve. We denote this property as “faithfulness”, because it implies that some information remains preserved by RSRG maps that fall under this class. Furthermore, we show that \(b=2\) weighted majority-like RSRG maps acting on the \(q=2\) Potts model can be divided into two categories, maps that behave like decimation and maps that behave like the majority rule.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信