Carlos Giovani O. Bruziquesi, José Balena G. Filho, Herman S. Mansur, Poliane Chagas, Alexandra A. P. Mansur, Luiz Carlos A. Oliveira, Adilson C. Silva
{"title":"基于铌酸盐的新型有机染料氧化催化剂:一种机理方法","authors":"Carlos Giovani O. Bruziquesi, José Balena G. Filho, Herman S. Mansur, Poliane Chagas, Alexandra A. P. Mansur, Luiz Carlos A. Oliveira, Adilson C. Silva","doi":"10.1007/s11270-024-07480-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we aimed to demonstrate new polyoxoniobate containing surface peroxo groups obtained after the treatment of niobic acid with hydrogen peroxide and lyophilization process. Raman and diffuse reflectance measurements confirm the presence of peroxo groups in the new polyoxometalate. Isotherms from N<sub>2</sub> adsorption/desorption have evidenced a drastic change in specific surface area after treatment with hydrogen peroxide, from 195 m<sup>2</sup>.g<sup>−1</sup> for Nb1 to 4 m<sup>2</sup>.g<sup>−1</sup> for Nb3. Catalytic studies were performed for Congo red (CR) oxidation using H<sub>2</sub>O<sub>2</sub> as oxidizing promoter. The results showed a new material with larger specific area, smaller particle size and an increase in peroxo groups, thus leading to higher catalytic response of discoloration of the Congo red (about 70% for Nb3 and close to 20% for the other catalysts) as compared with the raw material, without previous treatment.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Niobate Based Catalyst for Organic Dye Oxidation: A Mechanistic Approach\",\"authors\":\"Carlos Giovani O. Bruziquesi, José Balena G. Filho, Herman S. Mansur, Poliane Chagas, Alexandra A. P. Mansur, Luiz Carlos A. Oliveira, Adilson C. Silva\",\"doi\":\"10.1007/s11270-024-07480-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we aimed to demonstrate new polyoxoniobate containing surface peroxo groups obtained after the treatment of niobic acid with hydrogen peroxide and lyophilization process. Raman and diffuse reflectance measurements confirm the presence of peroxo groups in the new polyoxometalate. Isotherms from N<sub>2</sub> adsorption/desorption have evidenced a drastic change in specific surface area after treatment with hydrogen peroxide, from 195 m<sup>2</sup>.g<sup>−1</sup> for Nb1 to 4 m<sup>2</sup>.g<sup>−1</sup> for Nb3. Catalytic studies were performed for Congo red (CR) oxidation using H<sub>2</sub>O<sub>2</sub> as oxidizing promoter. The results showed a new material with larger specific area, smaller particle size and an increase in peroxo groups, thus leading to higher catalytic response of discoloration of the Congo red (about 70% for Nb3 and close to 20% for the other catalysts) as compared with the raw material, without previous treatment.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07480-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07480-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
New Niobate Based Catalyst for Organic Dye Oxidation: A Mechanistic Approach
In this work, we aimed to demonstrate new polyoxoniobate containing surface peroxo groups obtained after the treatment of niobic acid with hydrogen peroxide and lyophilization process. Raman and diffuse reflectance measurements confirm the presence of peroxo groups in the new polyoxometalate. Isotherms from N2 adsorption/desorption have evidenced a drastic change in specific surface area after treatment with hydrogen peroxide, from 195 m2.g−1 for Nb1 to 4 m2.g−1 for Nb3. Catalytic studies were performed for Congo red (CR) oxidation using H2O2 as oxidizing promoter. The results showed a new material with larger specific area, smaller particle size and an increase in peroxo groups, thus leading to higher catalytic response of discoloration of the Congo red (about 70% for Nb3 and close to 20% for the other catalysts) as compared with the raw material, without previous treatment.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.