通过惰性气体冷凝形成的 hcp Co(Mo)纳米粒子固溶性增强

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
S. Dhapola, J. E. Shield
{"title":"通过惰性气体冷凝形成的 hcp Co(Mo)纳米粒子固溶性增强","authors":"S. Dhapola,&nbsp;J. E. Shield","doi":"10.1007/s11051-024-06088-y","DOIUrl":null,"url":null,"abstract":"<div><p>Co–Mo alloy clusters with extended solubility of Mo in hcp Co were produced by inert gas condensation (IGC). While the equilibrium solubility of Mo in hexagonal close-packed (hcp) Co is on the order of 1 atomic percent, the non-equilibrium aspects of IGC resulted in ~ 18 atomic percent Mo dissolved in hcp Co. The extended solid solutions and hcp structure were observed across all of the processing conditions, which included variation of sputtering power and aperture size. There was, however, variation of nanoparticle size and magnetic behavior with processing parameters. The Co(Mo) nanoparticles were ferromagnetic at room temperature. Coercivities of the nanoparticles produced with a 2.5-mm aperture were independent of sputtering power and significantly higher than those of the nanoparticles produced with a 7-mm aperture. The coercivities of the nanoparticles produced with a 7-mm aperture were slightly power-dependent. Overall, there appeared to be a relationship between coercivity and nanoparticle size.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11051-024-06088-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced solid solubility in hcp Co(Mo) nanoparticles formed via inert gas condensation\",\"authors\":\"S. Dhapola,&nbsp;J. E. Shield\",\"doi\":\"10.1007/s11051-024-06088-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Co–Mo alloy clusters with extended solubility of Mo in hcp Co were produced by inert gas condensation (IGC). While the equilibrium solubility of Mo in hexagonal close-packed (hcp) Co is on the order of 1 atomic percent, the non-equilibrium aspects of IGC resulted in ~ 18 atomic percent Mo dissolved in hcp Co. The extended solid solutions and hcp structure were observed across all of the processing conditions, which included variation of sputtering power and aperture size. There was, however, variation of nanoparticle size and magnetic behavior with processing parameters. The Co(Mo) nanoparticles were ferromagnetic at room temperature. Coercivities of the nanoparticles produced with a 2.5-mm aperture were independent of sputtering power and significantly higher than those of the nanoparticles produced with a 7-mm aperture. The coercivities of the nanoparticles produced with a 7-mm aperture were slightly power-dependent. Overall, there appeared to be a relationship between coercivity and nanoparticle size.</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"26 8\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11051-024-06088-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-024-06088-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06088-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过惰性气体冷凝(IGC)产生了钼在六方紧密堆积钴(hcp Co)中溶解度更高的钴钼合金团簇。钼在六方紧密堆积(hcp)钴中的平衡溶解度约为 1 原子%,而 IGC 的非平衡特性导致钼在 hcp 钴中的溶解度达到约 18 原子%。在包括溅射功率和孔径大小变化在内的所有加工条件下,都能观察到扩展固溶体和 hcp 结构。然而,纳米粒子的尺寸和磁性随加工参数的变化而变化。Co(Mo) 纳米粒子在室温下具有铁磁性。用 2.5 毫米孔径生产的纳米粒子的矫顽力与溅射功率无关,且明显高于用 7 毫米孔径生产的纳米粒子。用 7 毫米孔径生产的纳米粒子的矫顽力略微依赖于功率。总的来说,矫顽力与纳米粒子尺寸之间似乎存在某种关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced solid solubility in hcp Co(Mo) nanoparticles formed via inert gas condensation

Enhanced solid solubility in hcp Co(Mo) nanoparticles formed via inert gas condensation

Co–Mo alloy clusters with extended solubility of Mo in hcp Co were produced by inert gas condensation (IGC). While the equilibrium solubility of Mo in hexagonal close-packed (hcp) Co is on the order of 1 atomic percent, the non-equilibrium aspects of IGC resulted in ~ 18 atomic percent Mo dissolved in hcp Co. The extended solid solutions and hcp structure were observed across all of the processing conditions, which included variation of sputtering power and aperture size. There was, however, variation of nanoparticle size and magnetic behavior with processing parameters. The Co(Mo) nanoparticles were ferromagnetic at room temperature. Coercivities of the nanoparticles produced with a 2.5-mm aperture were independent of sputtering power and significantly higher than those of the nanoparticles produced with a 7-mm aperture. The coercivities of the nanoparticles produced with a 7-mm aperture were slightly power-dependent. Overall, there appeared to be a relationship between coercivity and nanoparticle size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信