量子物理学、数字计算机和整体视角下的生活

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
George F. R. Ellis
{"title":"量子物理学、数字计算机和整体视角下的生活","authors":"George F. R. Ellis","doi":"10.1007/s10701-024-00792-4","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum physics is a linear theory, so it is somewhat puzzling that it can underlie very complex systems such as digital computers and life. This paper investigates how this is possible. Physically, such complex systems are necessarily modular hierarchical structures, with a number of key features. Firstly, they cannot be described by a single wave function: only local wave functions can exist, rather than a single wave function for a living cell, a cat, or a brain. Secondly, the quantum to classical transition is characterised by contextual wave-function collapse shaped by macroscopic elements that can be described classically. Thirdly, downward causation occurs in the physical hierarchy in two key ways: by the downward influence of time dependent constraints, and by creation, modification, or deletion of lower level elements. Fourthly, there are also logical modular hierarchical structures supported by the physical ones, such as algorithms and computer programs, They are able to support arbitrary logical operations, which can influence physical outcomes as in computer aided design and 3-d printing. Finally, complex systems are necessarily open systems, with heat baths playing a key role in their dynamics and providing local arrows of time that agree with the cosmological direction of time that is established by the evolution of the universe.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00792-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum Physics, Digital Computers, and Life from a Holistic Perspective\",\"authors\":\"George F. R. Ellis\",\"doi\":\"10.1007/s10701-024-00792-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum physics is a linear theory, so it is somewhat puzzling that it can underlie very complex systems such as digital computers and life. This paper investigates how this is possible. Physically, such complex systems are necessarily modular hierarchical structures, with a number of key features. Firstly, they cannot be described by a single wave function: only local wave functions can exist, rather than a single wave function for a living cell, a cat, or a brain. Secondly, the quantum to classical transition is characterised by contextual wave-function collapse shaped by macroscopic elements that can be described classically. Thirdly, downward causation occurs in the physical hierarchy in two key ways: by the downward influence of time dependent constraints, and by creation, modification, or deletion of lower level elements. Fourthly, there are also logical modular hierarchical structures supported by the physical ones, such as algorithms and computer programs, They are able to support arbitrary logical operations, which can influence physical outcomes as in computer aided design and 3-d printing. Finally, complex systems are necessarily open systems, with heat baths playing a key role in their dynamics and providing local arrows of time that agree with the cosmological direction of time that is established by the evolution of the universe.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10701-024-00792-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-024-00792-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-024-00792-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子物理学是一种线性理论,因此它能够成为数字计算机和生命等非常复杂的系统的基础,这多少令人费解。本文探讨了这一可能性。从物理学角度看,这类复杂系统必然是模块化的分层结构,具有一些关键特征。首先,它们无法用单一波函数来描述:只能存在局部波函数,而不是一个活细胞、一只猫或一个大脑的单一波函数。其次,从量子到经典的转变过程中,宏观元素所形成的上下文波函数坍缩是可以用经典来描述的。第三,物理层次中的向下因果关系主要通过两种方式发生:一是时间相关约束的向下影响,二是低层元素的创建、修改或删除。第四,物理层次结构还支持逻辑模块化层次结构,如算法和计算机程序,它们能够支持任意逻辑运算,从而影响物理结果,如计算机辅助设计和三维打印。最后,复杂系统必然是开放系统,热浴在其动力学中起着关键作用,并提供局部时间箭头,与宇宙演化所确定的宇宙学时间方向一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Physics, Digital Computers, and Life from a Holistic Perspective

Quantum physics is a linear theory, so it is somewhat puzzling that it can underlie very complex systems such as digital computers and life. This paper investigates how this is possible. Physically, such complex systems are necessarily modular hierarchical structures, with a number of key features. Firstly, they cannot be described by a single wave function: only local wave functions can exist, rather than a single wave function for a living cell, a cat, or a brain. Secondly, the quantum to classical transition is characterised by contextual wave-function collapse shaped by macroscopic elements that can be described classically. Thirdly, downward causation occurs in the physical hierarchy in two key ways: by the downward influence of time dependent constraints, and by creation, modification, or deletion of lower level elements. Fourthly, there are also logical modular hierarchical structures supported by the physical ones, such as algorithms and computer programs, They are able to support arbitrary logical operations, which can influence physical outcomes as in computer aided design and 3-d printing. Finally, complex systems are necessarily open systems, with heat baths playing a key role in their dynamics and providing local arrows of time that agree with the cosmological direction of time that is established by the evolution of the universe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信