{"title":"关于最小砖块的诺林-托马斯猜想","authors":"Xing Feng","doi":"10.1002/jgt.23175","DOIUrl":null,"url":null,"abstract":"<p>A 3-connected graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is a <i>brick</i> if <span></span><math>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>S</mi>\n </mrow></math> has a perfect matching, for each pair <span></span><math>\n \n <mrow>\n <mi>S</mi>\n </mrow></math> of vertices of <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math>. A brick <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is <i>minimal</i> if <span></span><math>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow></math> ceases to be a brick for every edge <span></span><math>\n \n <mrow>\n <mi>e</mi>\n \n <mo>∈</mo>\n \n <mi>E</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>. Norine and Thomas proved that each minimal brick contains at least three vertices of degree three and made a stronger conjecture: there exists <span></span><math>\n \n <mrow>\n <mi>α</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow></math> such that every minimal brick <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> has at least <span></span><math>\n \n <mrow>\n <mi>α</mi>\n \n <mo>∣</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∣</mo>\n </mrow></math> cubic vertices. In this paper, we prove this conjecture holds for all minimal bricks of an average degree no less than 23/5. As its corollary, we show that each minimal brick on <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math> vertices contains more than <span></span><math>\n \n <mrow>\n <mi>n</mi>\n \n <mo>/</mo>\n \n <mn>5</mn>\n </mrow></math> vertices of degree at most four.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"162-172"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Norine–Thomas conjecture concerning minimal bricks\",\"authors\":\"Xing Feng\",\"doi\":\"10.1002/jgt.23175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A 3-connected graph <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is a <i>brick</i> if <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>S</mi>\\n </mrow></math> has a perfect matching, for each pair <span></span><math>\\n \\n <mrow>\\n <mi>S</mi>\\n </mrow></math> of vertices of <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math>. A brick <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> is <i>minimal</i> if <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>e</mi>\\n </mrow></math> ceases to be a brick for every edge <span></span><math>\\n \\n <mrow>\\n <mi>e</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>E</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow></math>. Norine and Thomas proved that each minimal brick contains at least three vertices of degree three and made a stronger conjecture: there exists <span></span><math>\\n \\n <mrow>\\n <mi>α</mi>\\n \\n <mo>></mo>\\n \\n <mn>0</mn>\\n </mrow></math> such that every minimal brick <span></span><math>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow></math> has at least <span></span><math>\\n \\n <mrow>\\n <mi>α</mi>\\n \\n <mo>∣</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>∣</mo>\\n </mrow></math> cubic vertices. In this paper, we prove this conjecture holds for all minimal bricks of an average degree no less than 23/5. As its corollary, we show that each minimal brick on <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow></math> vertices contains more than <span></span><math>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>/</mo>\\n \\n <mn>5</mn>\\n </mrow></math> vertices of degree at most four.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 1\",\"pages\":\"162-172\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23175\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23175","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a Norine–Thomas conjecture concerning minimal bricks
A 3-connected graph is a brick if has a perfect matching, for each pair of vertices of . A brick is minimal if ceases to be a brick for every edge . Norine and Thomas proved that each minimal brick contains at least three vertices of degree three and made a stronger conjecture: there exists such that every minimal brick has at least cubic vertices. In this paper, we prove this conjecture holds for all minimal bricks of an average degree no less than 23/5. As its corollary, we show that each minimal brick on vertices contains more than vertices of degree at most four.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .