关于最小砖块的诺林-托马斯猜想

Pub Date : 2024-09-11 DOI:10.1002/jgt.23175
Xing Feng
{"title":"关于最小砖块的诺林-托马斯猜想","authors":"Xing Feng","doi":"10.1002/jgt.23175","DOIUrl":null,"url":null,"abstract":"A 3‐connected graph is a <jats:italic>brick</jats:italic> if has a perfect matching, for each pair of vertices of . A brick is <jats:italic>minimal</jats:italic> if ceases to be a brick for every edge . Norine and Thomas proved that each minimal brick contains at least three vertices of degree three and made a stronger conjecture: there exists such that every minimal brick has at least cubic vertices. In this paper, we prove this conjecture holds for all minimal bricks of an average degree no less than 23/5. As its corollary, we show that each minimal brick on vertices contains more than vertices of degree at most four.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Norine–Thomas conjecture concerning minimal bricks\",\"authors\":\"Xing Feng\",\"doi\":\"10.1002/jgt.23175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 3‐connected graph is a <jats:italic>brick</jats:italic> if has a perfect matching, for each pair of vertices of . A brick is <jats:italic>minimal</jats:italic> if ceases to be a brick for every edge . Norine and Thomas proved that each minimal brick contains at least three vertices of degree three and made a stronger conjecture: there exists such that every minimal brick has at least cubic vertices. In this paper, we prove this conjecture holds for all minimal bricks of an average degree no less than 23/5. As its corollary, we show that each minimal brick on vertices contains more than vertices of degree at most four.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/jgt.23175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/jgt.23175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果对每一对顶点都有一个完美匹配,那么一个三连图就是一块砖。 如果对每一条边都不再是一块砖,那么这块砖就是最小的。诺林和托马斯证明了每块最小图至少包含三个三度顶点,并提出了一个更强的猜想:存在这样的情况,即每块最小图至少有三个立方顶点。在本文中,我们证明了这个猜想对于所有平均度数不小于 23/5 的极小砖块都成立。作为其推论,我们证明了每个极小砖块的顶点都包含度数最多为四的顶点以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a Norine–Thomas conjecture concerning minimal bricks
A 3‐connected graph is a brick if has a perfect matching, for each pair of vertices of . A brick is minimal if ceases to be a brick for every edge . Norine and Thomas proved that each minimal brick contains at least three vertices of degree three and made a stronger conjecture: there exists such that every minimal brick has at least cubic vertices. In this paper, we prove this conjecture holds for all minimal bricks of an average degree no less than 23/5. As its corollary, we show that each minimal brick on vertices contains more than vertices of degree at most four.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信