GeSn 薄膜中的离子注入损伤恢复

IF 4.3 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shangda Li;Shang Liu;Hryhorii Stanchu;Grey Abernathy;Baohua Li;Shui-Qing Yu;Xiaoxin Wang;Jifeng Liu
{"title":"GeSn 薄膜中的离子注入损伤恢复","authors":"Shangda Li;Shang Liu;Hryhorii Stanchu;Grey Abernathy;Baohua Li;Shui-Qing Yu;Xiaoxin Wang;Jifeng Liu","doi":"10.1109/JSTQE.2024.3457154","DOIUrl":null,"url":null,"abstract":"Germanium-tin (GeSn) alloys are promising materials for infrared photonics due to their tunable direct bandgap and compatibility with silicon technology. However, implantation doping of GeSn layers to achieve more sophisticated doping profiles faces challenges, particularly in restoring crystallinity after ion implantation. In this work, we investigate the recrystallization of ion-implanted GeSn thin films through rapid thermal annealing (RTA) and laser annealing. We propose a model for Sn diffusion pathways that lead to surface segregation based on distinct surface segregation patterns in GeSn layers with varying degrees of amorphization. Our results demonstrate that RTA at 400 °C effectively restores the crystallinity for GeSn thin films with up to 10.7 at.% Sn composition, despite a small amount of Sn surface segregation, while 532 nm wavelength CW laser annealing at a threshold power density above 52 kW/cm\n<sup>2</sup>\n also achieves recrystallization without Sn segregation. These findings contribute to understanding Sn segregation mechanisms and optimizing recrystallization conditions for GeSn after implantation, advancing its potential for infrared photonics applications.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion Implantation Damage Recovery in GeSn Thin Films\",\"authors\":\"Shangda Li;Shang Liu;Hryhorii Stanchu;Grey Abernathy;Baohua Li;Shui-Qing Yu;Xiaoxin Wang;Jifeng Liu\",\"doi\":\"10.1109/JSTQE.2024.3457154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Germanium-tin (GeSn) alloys are promising materials for infrared photonics due to their tunable direct bandgap and compatibility with silicon technology. However, implantation doping of GeSn layers to achieve more sophisticated doping profiles faces challenges, particularly in restoring crystallinity after ion implantation. In this work, we investigate the recrystallization of ion-implanted GeSn thin films through rapid thermal annealing (RTA) and laser annealing. We propose a model for Sn diffusion pathways that lead to surface segregation based on distinct surface segregation patterns in GeSn layers with varying degrees of amorphization. Our results demonstrate that RTA at 400 °C effectively restores the crystallinity for GeSn thin films with up to 10.7 at.% Sn composition, despite a small amount of Sn surface segregation, while 532 nm wavelength CW laser annealing at a threshold power density above 52 kW/cm\\n<sup>2</sup>\\n also achieves recrystallization without Sn segregation. These findings contribute to understanding Sn segregation mechanisms and optimizing recrystallization conditions for GeSn after implantation, advancing its potential for infrared photonics applications.\",\"PeriodicalId\":13094,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10670277/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10670277/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

锗锡 (GeSn) 合金具有可调直接带隙和与硅技术兼容的特点,是红外光子学的理想材料。然而,对 GeSn 层进行植入掺杂以实现更复杂的掺杂曲线面临着挑战,特别是在离子注入后恢复结晶度方面。在这项研究中,我们通过快速热退火(RTA)和激光退火研究了离子注入 GeSn 薄膜的再结晶。我们根据不同非晶化程度的 GeSn 层中不同的表面偏析模式,提出了导致表面偏析的 Sn 扩散途径模型。我们的研究结果表明,尽管存在少量的锡表面偏析,但 400 °C 下的 RTA 能有效地恢复锡含量高达 10.7 at.% 的 GeSn 薄膜的结晶度,而阈值功率密度高于 52 kW/cm2 的 532 nm 波长连续波激光退火也能实现无锡偏析的再结晶。这些发现有助于了解锡偏析机制和优化 GeSn 植入后的再结晶条件,从而提高其在红外光子学应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ion Implantation Damage Recovery in GeSn Thin Films
Germanium-tin (GeSn) alloys are promising materials for infrared photonics due to their tunable direct bandgap and compatibility with silicon technology. However, implantation doping of GeSn layers to achieve more sophisticated doping profiles faces challenges, particularly in restoring crystallinity after ion implantation. In this work, we investigate the recrystallization of ion-implanted GeSn thin films through rapid thermal annealing (RTA) and laser annealing. We propose a model for Sn diffusion pathways that lead to surface segregation based on distinct surface segregation patterns in GeSn layers with varying degrees of amorphization. Our results demonstrate that RTA at 400 °C effectively restores the crystallinity for GeSn thin films with up to 10.7 at.% Sn composition, despite a small amount of Sn surface segregation, while 532 nm wavelength CW laser annealing at a threshold power density above 52 kW/cm 2 also achieves recrystallization without Sn segregation. These findings contribute to understanding Sn segregation mechanisms and optimizing recrystallization conditions for GeSn after implantation, advancing its potential for infrared photonics applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Selected Topics in Quantum Electronics
IEEE Journal of Selected Topics in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
10.60
自引率
2.00%
发文量
212
审稿时长
3 months
期刊介绍: Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信