{"title":"5,7,3′,4′,5′-五甲氧基黄酮--一种从 Murraya paniculata (L.) Jack 提取的黄酮类单体--通过 A2AR/Gephyrin/GABRA2 途径缓解焦虑症","authors":"Wenli Ma, Dayun Sui, Weilun Sun, Ping Yu, Yuangeng Li, Meiqi Guo, Huifeng Wang, Xiaoze Zhang, Xiaofeng Yu, Wenwen Fu, Huali Xu","doi":"10.1002/ptr.8327","DOIUrl":null,"url":null,"abstract":"The sedative and hypnotic properties of 5,7,3′,4′,5′‐pentamethoxyflavone (PMF), a monomer extracted from the leaves of <jats:italic>Murraya paniculata</jats:italic> (L.) Jack, have been reported. However, the role of PMFs in the development of anxiety remains uncertain. An anxiety model was developed using chronic unpredictable mild stimulation (CUMS). Kunming mice were randomly allocated to the following groups: control, CUMS, PMF (50 mg/kg), PMF (100 mg/kg), and diazepam (3 mg/kg). The anxiolytic effects of PMFs were evaluated using elevated plus maze (EPM) test and open field test (OFT). Enzyme‐linked immunosorbent assay (ELISA) kits were used to analyze the serum levels of corticosterone (CORT), 5‐hydroxytryptamine (5‐HT), gamma‐aminobutyric acid (GABA), and cyclic adenosine monophosphate (cAMP) in the hippocampus. High‐throughput‐16S rRNA sequencing was performed to investigate its effect on the composition of the gut microbiota. Subsequently, western blotting was performed to assess the expression of GABAergic synaptic‐associated proteins. PMF effectively mitigated CUMS‐induced anxiety‐like behavior. Further examination revealed that PMF treatment ameliorated dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis and increased 5‐HT and GABA levels in the hippocampus. Notably, the ability of PMF to maintain the stability of GABAergic synapses by enhancing the species composition of the gut microbiota and acting on the adenosine a2a receptor (A<jats:sub>2A</jats:sub>R)/gephyrin/gamma‐aminobutyric acid A receptor alpha 2 (GABRA2) pathway revealed a previously unrecognized mechanism for the anxiolytic effect of PMF. These findings suggest that PMF enhances the expression of A<jats:sub>2A</jats:sub>R, preserves GABAergic synaptic stability, and reduces anxiety by modulating the microbiota composition. Thus, it holds promise as an anxiolytic agent.","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5,7,3′,4′,5′‐Pentamethoxyflavone, a Flavonoid Monomer Extracted From Murraya paniculata (L.) Jack, Alleviates Anxiety Through the A2AR/Gephyrin/GABRA2 Pathway\",\"authors\":\"Wenli Ma, Dayun Sui, Weilun Sun, Ping Yu, Yuangeng Li, Meiqi Guo, Huifeng Wang, Xiaoze Zhang, Xiaofeng Yu, Wenwen Fu, Huali Xu\",\"doi\":\"10.1002/ptr.8327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sedative and hypnotic properties of 5,7,3′,4′,5′‐pentamethoxyflavone (PMF), a monomer extracted from the leaves of <jats:italic>Murraya paniculata</jats:italic> (L.) Jack, have been reported. However, the role of PMFs in the development of anxiety remains uncertain. An anxiety model was developed using chronic unpredictable mild stimulation (CUMS). Kunming mice were randomly allocated to the following groups: control, CUMS, PMF (50 mg/kg), PMF (100 mg/kg), and diazepam (3 mg/kg). The anxiolytic effects of PMFs were evaluated using elevated plus maze (EPM) test and open field test (OFT). Enzyme‐linked immunosorbent assay (ELISA) kits were used to analyze the serum levels of corticosterone (CORT), 5‐hydroxytryptamine (5‐HT), gamma‐aminobutyric acid (GABA), and cyclic adenosine monophosphate (cAMP) in the hippocampus. High‐throughput‐16S rRNA sequencing was performed to investigate its effect on the composition of the gut microbiota. Subsequently, western blotting was performed to assess the expression of GABAergic synaptic‐associated proteins. PMF effectively mitigated CUMS‐induced anxiety‐like behavior. Further examination revealed that PMF treatment ameliorated dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis and increased 5‐HT and GABA levels in the hippocampus. Notably, the ability of PMF to maintain the stability of GABAergic synapses by enhancing the species composition of the gut microbiota and acting on the adenosine a2a receptor (A<jats:sub>2A</jats:sub>R)/gephyrin/gamma‐aminobutyric acid A receptor alpha 2 (GABRA2) pathway revealed a previously unrecognized mechanism for the anxiolytic effect of PMF. These findings suggest that PMF enhances the expression of A<jats:sub>2A</jats:sub>R, preserves GABAergic synaptic stability, and reduces anxiety by modulating the microbiota composition. Thus, it holds promise as an anxiolytic agent.\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8327\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8327","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
5,7,3′,4′,5′‐Pentamethoxyflavone, a Flavonoid Monomer Extracted From Murraya paniculata (L.) Jack, Alleviates Anxiety Through the A2AR/Gephyrin/GABRA2 Pathway
The sedative and hypnotic properties of 5,7,3′,4′,5′‐pentamethoxyflavone (PMF), a monomer extracted from the leaves of Murraya paniculata (L.) Jack, have been reported. However, the role of PMFs in the development of anxiety remains uncertain. An anxiety model was developed using chronic unpredictable mild stimulation (CUMS). Kunming mice were randomly allocated to the following groups: control, CUMS, PMF (50 mg/kg), PMF (100 mg/kg), and diazepam (3 mg/kg). The anxiolytic effects of PMFs were evaluated using elevated plus maze (EPM) test and open field test (OFT). Enzyme‐linked immunosorbent assay (ELISA) kits were used to analyze the serum levels of corticosterone (CORT), 5‐hydroxytryptamine (5‐HT), gamma‐aminobutyric acid (GABA), and cyclic adenosine monophosphate (cAMP) in the hippocampus. High‐throughput‐16S rRNA sequencing was performed to investigate its effect on the composition of the gut microbiota. Subsequently, western blotting was performed to assess the expression of GABAergic synaptic‐associated proteins. PMF effectively mitigated CUMS‐induced anxiety‐like behavior. Further examination revealed that PMF treatment ameliorated dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis and increased 5‐HT and GABA levels in the hippocampus. Notably, the ability of PMF to maintain the stability of GABAergic synapses by enhancing the species composition of the gut microbiota and acting on the adenosine a2a receptor (A2AR)/gephyrin/gamma‐aminobutyric acid A receptor alpha 2 (GABRA2) pathway revealed a previously unrecognized mechanism for the anxiolytic effect of PMF. These findings suggest that PMF enhances the expression of A2AR, preserves GABAergic synaptic stability, and reduces anxiety by modulating the microbiota composition. Thus, it holds promise as an anxiolytic agent.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.