锦葵科植物次生韧皮部记录到的极端泊松比:树皮生物力学功能的一个亮点

IF 2.1 3区 农林科学 Q2 FORESTRY
Trees Pub Date : 2024-08-27 DOI:10.1007/s00468-024-02558-x
Tancrède Alméras, Stéphane Corn, Anne Baranger, Arnaud Regazzi, Jonathan Barés, Romain Lehnebach, Bruno Clair
{"title":"锦葵科植物次生韧皮部记录到的极端泊松比:树皮生物力学功能的一个亮点","authors":"Tancrède Alméras,&nbsp;Stéphane Corn,&nbsp;Anne Baranger,&nbsp;Arnaud Regazzi,&nbsp;Jonathan Barés,&nbsp;Romain Lehnebach,&nbsp;Bruno Clair","doi":"10.1007/s00468-024-02558-x","DOIUrl":null,"url":null,"abstract":"<div><p>In some angiosperm species, especially in the <i>Malvaceae</i> family, postural control and directional growth of the stem are enabled by the mechanical interaction between the growing cambium and the secondary phloem. A key feature of this motor mechanism is the ability to redirect the tangential stress induced in secondary phloem into a longitudinal stress enabling the control of stem orientation. Here we studied how the microstructure of the secondary phloem is optimized for this function. We measured the longitudinal-tangential Poisson’s ratio and the longitudinal modulus of elasticity of secondary phloem in 22 tree species including <i>Malvaceae</i> and other families. We modeled the microstructure of <i>Malvaceae</i> secondary phloem using finite elements. The Poisson’s ratio of secondary phloem from <i>Malvaceae</i> trees was found one to two orders of magnitude higher than for other species, reaching the highest values ever reported for a natural material. Mechanical modeling confirmed these results and showed that parameters of the microstructure of secondary phloem are set at value optimizing this Poisson’s ratio. This highlights that the specific microstructure of <i>Malvaceae</i> secondary phloem is designed to maximize the conversion of cambial growth pressure into a longitudinal mechanical stress enabling the directional growth.</p></div>","PeriodicalId":805,"journal":{"name":"Trees","volume":"38 6","pages":"1379 - 1390"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme Poisson’s ratios recorded in the secondary phloem of Malvaceae: a highlight on the biomechanical function of bark\",\"authors\":\"Tancrède Alméras,&nbsp;Stéphane Corn,&nbsp;Anne Baranger,&nbsp;Arnaud Regazzi,&nbsp;Jonathan Barés,&nbsp;Romain Lehnebach,&nbsp;Bruno Clair\",\"doi\":\"10.1007/s00468-024-02558-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In some angiosperm species, especially in the <i>Malvaceae</i> family, postural control and directional growth of the stem are enabled by the mechanical interaction between the growing cambium and the secondary phloem. A key feature of this motor mechanism is the ability to redirect the tangential stress induced in secondary phloem into a longitudinal stress enabling the control of stem orientation. Here we studied how the microstructure of the secondary phloem is optimized for this function. We measured the longitudinal-tangential Poisson’s ratio and the longitudinal modulus of elasticity of secondary phloem in 22 tree species including <i>Malvaceae</i> and other families. We modeled the microstructure of <i>Malvaceae</i> secondary phloem using finite elements. The Poisson’s ratio of secondary phloem from <i>Malvaceae</i> trees was found one to two orders of magnitude higher than for other species, reaching the highest values ever reported for a natural material. Mechanical modeling confirmed these results and showed that parameters of the microstructure of secondary phloem are set at value optimizing this Poisson’s ratio. This highlights that the specific microstructure of <i>Malvaceae</i> secondary phloem is designed to maximize the conversion of cambial growth pressure into a longitudinal mechanical stress enabling the directional growth.</p></div>\",\"PeriodicalId\":805,\"journal\":{\"name\":\"Trees\",\"volume\":\"38 6\",\"pages\":\"1379 - 1390\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trees\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00468-024-02558-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00468-024-02558-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

在一些被子植物物种中,尤其是在锦葵科植物中,茎干的姿势控制和定向生长是通过生长的心皮和次生韧皮部之间的机械相互作用来实现的。这种运动机制的一个主要特点是能将次生韧皮部引起的切向应力重新定向为纵向应力,从而控制茎的方向。在这里,我们研究了次生韧皮部的微观结构是如何优化这一功能的。我们测量了 22 个树种(包括锦葵科和其他科)次生韧皮部的纵切泊松比和纵向弹性模量。我们使用有限元模拟了锦葵科次生韧皮部的微观结构。结果发现,锦葵科树木次生韧皮部的泊松比比其他树种高出一到两个数量级,达到了有报道的天然材料的最高值。机械建模证实了这些结果,并表明次生韧皮部微观结构参数的设定值是泊松比的最佳值。这突出表明,锦葵次生韧皮部的特殊微观结构旨在最大限度地将韧皮部生长压力转化为纵向机械应力,从而实现定向生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extreme Poisson’s ratios recorded in the secondary phloem of Malvaceae: a highlight on the biomechanical function of bark

Extreme Poisson’s ratios recorded in the secondary phloem of Malvaceae: a highlight on the biomechanical function of bark

In some angiosperm species, especially in the Malvaceae family, postural control and directional growth of the stem are enabled by the mechanical interaction between the growing cambium and the secondary phloem. A key feature of this motor mechanism is the ability to redirect the tangential stress induced in secondary phloem into a longitudinal stress enabling the control of stem orientation. Here we studied how the microstructure of the secondary phloem is optimized for this function. We measured the longitudinal-tangential Poisson’s ratio and the longitudinal modulus of elasticity of secondary phloem in 22 tree species including Malvaceae and other families. We modeled the microstructure of Malvaceae secondary phloem using finite elements. The Poisson’s ratio of secondary phloem from Malvaceae trees was found one to two orders of magnitude higher than for other species, reaching the highest values ever reported for a natural material. Mechanical modeling confirmed these results and showed that parameters of the microstructure of secondary phloem are set at value optimizing this Poisson’s ratio. This highlights that the specific microstructure of Malvaceae secondary phloem is designed to maximize the conversion of cambial growth pressure into a longitudinal mechanical stress enabling the directional growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trees
Trees 农林科学-林学
CiteScore
4.50
自引率
4.30%
发文量
113
审稿时长
3.8 months
期刊介绍: Trees - Structure and Function publishes original articles on the physiology, biochemistry, functional anatomy, structure and ecology of trees and other woody plants. Also presented are articles concerned with pathology and technological problems, when they contribute to the basic understanding of structure and function of trees. In addition to original articles and short communications, the journal publishes reviews on selected topics concerning the structure and function of trees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信