{"title":"用于未来大容量无线通信的高功率、高效率 W 波段 InAlGaN/AlN/GaN 高电子迁移率晶体管","authors":"Yusuke Kumazaki, Shiro Ozaki, Yasuhiro Nakasha, Naoya Okamoto, Atsushi Yamada, Toshihiro Ohki","doi":"10.35848/1882-0786/ad68c2","DOIUrl":null,"url":null,"abstract":"This study describes high-power and high-efficiency W-band InAlGaN/AlN/GaN high-electron-mobility transistors (HEMTs) for future sub-terahertz wireless communications. A low-thermal-budget selective-area growth (SAG) process was developed to obtain low contact resistance with low trap states. Transmission lines and substrate structures were optimized to obtain high-thermal conductivity and low substrate resonance. Consequently, a high output power of 28.7 dBm (742 mW), output power density of 4.6 W mm<sup>−1</sup>, and power-added efficiency (PAE) of 28.0% were achieved with pre-matched InAlGaN/AlN/GaN HEMTs at 90 GHz, which were superior combination of output power and PAE compared to the conventional high-temperature SAG process.","PeriodicalId":8093,"journal":{"name":"Applied Physics Express","volume":"35 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-power and efficiency W-band InAlGaN/AlN/GaN high-electron-mobility transistors for future high-capacity wireless communications\",\"authors\":\"Yusuke Kumazaki, Shiro Ozaki, Yasuhiro Nakasha, Naoya Okamoto, Atsushi Yamada, Toshihiro Ohki\",\"doi\":\"10.35848/1882-0786/ad68c2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study describes high-power and high-efficiency W-band InAlGaN/AlN/GaN high-electron-mobility transistors (HEMTs) for future sub-terahertz wireless communications. A low-thermal-budget selective-area growth (SAG) process was developed to obtain low contact resistance with low trap states. Transmission lines and substrate structures were optimized to obtain high-thermal conductivity and low substrate resonance. Consequently, a high output power of 28.7 dBm (742 mW), output power density of 4.6 W mm<sup>−1</sup>, and power-added efficiency (PAE) of 28.0% were achieved with pre-matched InAlGaN/AlN/GaN HEMTs at 90 GHz, which were superior combination of output power and PAE compared to the conventional high-temperature SAG process.\",\"PeriodicalId\":8093,\"journal\":{\"name\":\"Applied Physics Express\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.35848/1882-0786/ad68c2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad68c2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本研究介绍了用于未来亚太赫兹无线通信的高功率、高效率 W 波段 InAlGaN/AlN/GaN 高电子迁移率晶体管(HEMT)。我们开发了一种低热预算选择性区域生长(SAG)工艺,以获得低接触电阻和低阱态。对传输线和衬底结构进行了优化,以获得高热导率和低衬底谐振。因此,与传统的高温 SAG 工艺相比,预匹配 InAlGaN/AlN/GaN HEMT 在 90 GHz 频率下实现了 28.7 dBm (742 mW) 的高输出功率、4.6 W mm-1 的输出功率密度和 28.0% 的功率附加效率 (PAE)。
High-power and efficiency W-band InAlGaN/AlN/GaN high-electron-mobility transistors for future high-capacity wireless communications
This study describes high-power and high-efficiency W-band InAlGaN/AlN/GaN high-electron-mobility transistors (HEMTs) for future sub-terahertz wireless communications. A low-thermal-budget selective-area growth (SAG) process was developed to obtain low contact resistance with low trap states. Transmission lines and substrate structures were optimized to obtain high-thermal conductivity and low substrate resonance. Consequently, a high output power of 28.7 dBm (742 mW), output power density of 4.6 W mm−1, and power-added efficiency (PAE) of 28.0% were achieved with pre-matched InAlGaN/AlN/GaN HEMTs at 90 GHz, which were superior combination of output power and PAE compared to the conventional high-temperature SAG process.
期刊介绍:
Applied Physics Express (APEX) is a letters journal devoted solely to rapid dissemination of up-to-date and concise reports on new findings in applied physics. The motto of APEX is high scientific quality and prompt publication. APEX is a sister journal of the Japanese Journal of Applied Physics (JJAP) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).