用于室温高性能锂离子电池的聚合物-离子相互作用引发的准固体电解质

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fangzheng Liu, Jiayi Wang, Wenyan Chen, Mingman Yuan, Qingrong Wang, Ruohong Ke, Guangzhao Zhang, Jian Chang, Chaoyang Wang, Yonghong Deng, Jun Wang, Minhua Shao
{"title":"用于室温高性能锂离子电池的聚合物-离子相互作用引发的准固体电解质","authors":"Fangzheng Liu,&nbsp;Jiayi Wang,&nbsp;Wenyan Chen,&nbsp;Mingman Yuan,&nbsp;Qingrong Wang,&nbsp;Ruohong Ke,&nbsp;Guangzhao Zhang,&nbsp;Jian Chang,&nbsp;Chaoyang Wang,&nbsp;Yonghong Deng,&nbsp;Jun Wang,&nbsp;Minhua Shao","doi":"10.1002/adma.202409838","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion batteries using quasi-solid gel electrolytes (QSEs) have gained increasing interest due to their enhanced safety features. However, their commercial viability is hindered by low ionic conductivity and poor solid–solid contact interfaces. In this study, a QSE synthesized by in situ polymerizing methyl methacrylate (MMA) in 1,2–dimethoxyethane (DME)-based electrolyte is introduced, which exhibits remarkable performance in high-loading graphite||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) pouch cells. Owing to the unique solvent-lacking solvation structure, the graphite exfoliation caused by the well-known solvent co-intercalation is prohibited, and this unprecedented phenomenon is found to be universal for other graphite-unfriendly solvents. The high ionic conductivity and great interfacial contact provided by DME enable the quasi-solid graphite||NCM811 pouch cell to demonstrate superior C-rate capability even at a high cathode mass loading (17.5 mg cm<sup>-2</sup>), surpassing liquid carbonate electrolyte cells. Meanwhile, the optimized QSE based on carbonates exhibits excellent cycle life (92.4% capacity retention after 1700 cycles at 0.5C/0.5C) and reliable safety under harsh conditions. It also outperforms liquid electrolytes in other high-energy-density batteries with larger volume change. These findings elucidate the polymer's pivotal role in QSEs, offering new insights for advancing quasi-solid-state battery commercialization.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 45","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202409838","citationCount":"0","resultStr":"{\"title\":\"Polymer-Ion Interaction Prompted Quasi-Solid Electrolyte for Room-Temperature High-Performance Lithium-Ion Batteries\",\"authors\":\"Fangzheng Liu,&nbsp;Jiayi Wang,&nbsp;Wenyan Chen,&nbsp;Mingman Yuan,&nbsp;Qingrong Wang,&nbsp;Ruohong Ke,&nbsp;Guangzhao Zhang,&nbsp;Jian Chang,&nbsp;Chaoyang Wang,&nbsp;Yonghong Deng,&nbsp;Jun Wang,&nbsp;Minhua Shao\",\"doi\":\"10.1002/adma.202409838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium-ion batteries using quasi-solid gel electrolytes (QSEs) have gained increasing interest due to their enhanced safety features. However, their commercial viability is hindered by low ionic conductivity and poor solid–solid contact interfaces. In this study, a QSE synthesized by in situ polymerizing methyl methacrylate (MMA) in 1,2–dimethoxyethane (DME)-based electrolyte is introduced, which exhibits remarkable performance in high-loading graphite||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) pouch cells. Owing to the unique solvent-lacking solvation structure, the graphite exfoliation caused by the well-known solvent co-intercalation is prohibited, and this unprecedented phenomenon is found to be universal for other graphite-unfriendly solvents. The high ionic conductivity and great interfacial contact provided by DME enable the quasi-solid graphite||NCM811 pouch cell to demonstrate superior C-rate capability even at a high cathode mass loading (17.5 mg cm<sup>-2</sup>), surpassing liquid carbonate electrolyte cells. Meanwhile, the optimized QSE based on carbonates exhibits excellent cycle life (92.4% capacity retention after 1700 cycles at 0.5C/0.5C) and reliable safety under harsh conditions. It also outperforms liquid electrolytes in other high-energy-density batteries with larger volume change. These findings elucidate the polymer's pivotal role in QSEs, offering new insights for advancing quasi-solid-state battery commercialization.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"36 45\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202409838\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202409838\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202409838","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用准固体凝胶电解质(QSE)的锂离子电池因其更高的安全性而受到越来越多的关注。然而,低离子电导率和不良的固-固接触界面阻碍了它们的商业可行性。本研究介绍了一种通过在 1,2 二甲基甲氧基乙烷(DME)基电解质中原位聚合甲基丙烯酸甲酯(MMA)而合成的 QSE,该 QSE 在高负载石墨||锂镍 0.8Co0.1Mn0.1O2 (NCM811) 袋式电池中表现出卓越的性能。由于其独特的溶剂缺乏溶解结构,众所周知的溶剂共渗引起的石墨剥离被禁止,而且这种前所未有的现象被发现在其他石墨不友好溶剂中也是普遍存在的。DME 提供的高离子电导率和良好的界面接触使准固态石墨||NCM811 袋式电池即使在高阴极质量负载(17.5 毫克 cm-2)下也能表现出卓越的 C 速率能力,超过了液态碳酸盐电解质电池。同时,基于碳酸盐的优化 QSE 表现出卓越的循环寿命(在 0.5C/0.5C 条件下循环 1700 次后容量保持率为 92.4%)和在苛刻条件下的可靠安全性。在体积变化较大的其他高能量密度电池中,它的性能也优于液态电解质。这些发现阐明了聚合物在 QSE 中的关键作用,为推进准固态电池商业化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polymer-Ion Interaction Prompted Quasi-Solid Electrolyte for Room-Temperature High-Performance Lithium-Ion Batteries

Polymer-Ion Interaction Prompted Quasi-Solid Electrolyte for Room-Temperature High-Performance Lithium-Ion Batteries

Polymer-Ion Interaction Prompted Quasi-Solid Electrolyte for Room-Temperature High-Performance Lithium-Ion Batteries

Polymer-Ion Interaction Prompted Quasi-Solid Electrolyte for Room-Temperature High-Performance Lithium-Ion Batteries

Lithium-ion batteries using quasi-solid gel electrolytes (QSEs) have gained increasing interest due to their enhanced safety features. However, their commercial viability is hindered by low ionic conductivity and poor solid–solid contact interfaces. In this study, a QSE synthesized by in situ polymerizing methyl methacrylate (MMA) in 1,2–dimethoxyethane (DME)-based electrolyte is introduced, which exhibits remarkable performance in high-loading graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) pouch cells. Owing to the unique solvent-lacking solvation structure, the graphite exfoliation caused by the well-known solvent co-intercalation is prohibited, and this unprecedented phenomenon is found to be universal for other graphite-unfriendly solvents. The high ionic conductivity and great interfacial contact provided by DME enable the quasi-solid graphite||NCM811 pouch cell to demonstrate superior C-rate capability even at a high cathode mass loading (17.5 mg cm-2), surpassing liquid carbonate electrolyte cells. Meanwhile, the optimized QSE based on carbonates exhibits excellent cycle life (92.4% capacity retention after 1700 cycles at 0.5C/0.5C) and reliable safety under harsh conditions. It also outperforms liquid electrolytes in other high-energy-density batteries with larger volume change. These findings elucidate the polymer's pivotal role in QSEs, offering new insights for advancing quasi-solid-state battery commercialization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信