研究未来储能系统中基于 Ca2+ 盐的盐内聚合物电解质

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-08-13 DOI:10.1007/s11581-024-05754-4
Kanak Aggarwal, Dipti Yadav, Kashish Tiwari, Pushpa Kushwaha, Neelam Srivastava
{"title":"研究未来储能系统中基于 Ca2+ 盐的盐内聚合物电解质","authors":"Kanak Aggarwal, Dipti Yadav, Kashish Tiwari, Pushpa Kushwaha, Neelam Srivastava","doi":"10.1007/s11581-024-05754-4","DOIUrl":null,"url":null,"abstract":"<p>The scientific community is continuously putting efforts to improve the energy/power density of energy storage devices, which leads to development of novel materials with enhanced electrochemical properties. Polymer-in-salt electrolytes (PISEs) are expected to have faster ion transport and hence may result in improved power density. In the present study, Ca salt–based PISE is synthesized using glutaraldehyde (GA)–crosslinked arrowroot starch as host matrix. The synthesized PISE has high conductivity (~ 0.01 S/cm), wide electrochemical stability window (ESW &gt; 3 V), and small characteristic relaxation time (τ ~ 17 µs) indicating the possibility of faster response in any device fabricated using synthesized PISEs. Fabricated supercapacitor, using the highest conducting PISE with rGO as electrode, has specific capacitance ~ 17 F/g at 1 mV/s and high power density 2.1 kW/kg with coulombic efficiency (CE) of &gt; 90.05% and with CAC as electrode, specific capacitance ~ 125 F/g at 1 mV/s and high power density 2.1 kW/kg with coulombic efficiency (CE) of &gt; 99%.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Ca2+ salt–based polymer-in-salt electrolyte for future energy storage systems\",\"authors\":\"Kanak Aggarwal, Dipti Yadav, Kashish Tiwari, Pushpa Kushwaha, Neelam Srivastava\",\"doi\":\"10.1007/s11581-024-05754-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The scientific community is continuously putting efforts to improve the energy/power density of energy storage devices, which leads to development of novel materials with enhanced electrochemical properties. Polymer-in-salt electrolytes (PISEs) are expected to have faster ion transport and hence may result in improved power density. In the present study, Ca salt–based PISE is synthesized using glutaraldehyde (GA)–crosslinked arrowroot starch as host matrix. The synthesized PISE has high conductivity (~ 0.01 S/cm), wide electrochemical stability window (ESW &gt; 3 V), and small characteristic relaxation time (τ ~ 17 µs) indicating the possibility of faster response in any device fabricated using synthesized PISEs. Fabricated supercapacitor, using the highest conducting PISE with rGO as electrode, has specific capacitance ~ 17 F/g at 1 mV/s and high power density 2.1 kW/kg with coulombic efficiency (CE) of &gt; 90.05% and with CAC as electrode, specific capacitance ~ 125 F/g at 1 mV/s and high power density 2.1 kW/kg with coulombic efficiency (CE) of &gt; 99%.</p>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11581-024-05754-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05754-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

科学界一直在努力提高储能设备的能量/功率密度,从而开发出具有更强电化学特性的新型材料。预计盐中聚合物电解质(PISE)将具有更快的离子传输速度,从而提高功率密度。在本研究中,使用戊二醛(GA)交联的箭筈淀粉作为主基质合成了钙盐基 PISE。合成的 PISE 具有较高的电导率(约 0.01 S/cm)、较宽的电化学稳定性窗口(ESW > 3 V)和较小的特征弛豫时间(τ ~ 17 µs),这表明使用合成的 PISE 制造的任何设备都有可能实现更快的响应。使用导电率最高的 PISE 制作的超级电容器,以 rGO 为电极,在 1 mV/s 时的比电容为 17 F/g,功率密度为 2.1 kW/kg,库仑效率(CE)为 90.05%;以 CAC 为电极,在 1 mV/s 时的比电容为 125 F/g,功率密度为 2.1 kW/kg,库仑效率(CE)为 99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating Ca2+ salt–based polymer-in-salt electrolyte for future energy storage systems

Investigating Ca2+ salt–based polymer-in-salt electrolyte for future energy storage systems

The scientific community is continuously putting efforts to improve the energy/power density of energy storage devices, which leads to development of novel materials with enhanced electrochemical properties. Polymer-in-salt electrolytes (PISEs) are expected to have faster ion transport and hence may result in improved power density. In the present study, Ca salt–based PISE is synthesized using glutaraldehyde (GA)–crosslinked arrowroot starch as host matrix. The synthesized PISE has high conductivity (~ 0.01 S/cm), wide electrochemical stability window (ESW > 3 V), and small characteristic relaxation time (τ ~ 17 µs) indicating the possibility of faster response in any device fabricated using synthesized PISEs. Fabricated supercapacitor, using the highest conducting PISE with rGO as electrode, has specific capacitance ~ 17 F/g at 1 mV/s and high power density 2.1 kW/kg with coulombic efficiency (CE) of > 90.05% and with CAC as electrode, specific capacitance ~ 125 F/g at 1 mV/s and high power density 2.1 kW/kg with coulombic efficiency (CE) of > 99%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信