具有不连续漂移的跳跃-扩散 SDE 的误差下限和近似最优性

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Paweł Przybyłowicz, Verena Schwarz, Michaela Szölgyenyi
{"title":"具有不连续漂移的跳跃-扩散 SDE 的误差下限和近似最优性","authors":"Paweł Przybyłowicz, Verena Schwarz, Michaela Szölgyenyi","doi":"10.1007/s10543-024-01036-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper sharp lower error bounds for numerical methods for jump-diffusion stochastic differential equations (SDEs) with discontinuous drift are proven. The approximation of jump-diffusion SDEs with non-adaptive as well as jump-adapted approximation schemes is studied and lower error bounds of order 3/4 for both classes of approximation schemes are provided. This yields optimality of the transformation-based jump-adapted quasi-Milstein scheme.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"98 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower error bounds and optimality of approximation for jump-diffusion SDEs with discontinuous drift\",\"authors\":\"Paweł Przybyłowicz, Verena Schwarz, Michaela Szölgyenyi\",\"doi\":\"10.1007/s10543-024-01036-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper sharp lower error bounds for numerical methods for jump-diffusion stochastic differential equations (SDEs) with discontinuous drift are proven. The approximation of jump-diffusion SDEs with non-adaptive as well as jump-adapted approximation schemes is studied and lower error bounds of order 3/4 for both classes of approximation schemes are provided. This yields optimality of the transformation-based jump-adapted quasi-Milstein scheme.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01036-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01036-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了具有不连续漂移的跳跃扩散随机微分方程(SDE)数值方法的尖锐误差下限。本文研究了用非自适应和跳变自适应近似方案对跳跃扩散随机微分方程的近似,并为这两类近似方案提供了 3/4 阶的误差下限。由此得出了基于变换的跳变适应准米尔斯坦方案的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower error bounds and optimality of approximation for jump-diffusion SDEs with discontinuous drift

In this paper sharp lower error bounds for numerical methods for jump-diffusion stochastic differential equations (SDEs) with discontinuous drift are proven. The approximation of jump-diffusion SDEs with non-adaptive as well as jump-adapted approximation schemes is studied and lower error bounds of order 3/4 for both classes of approximation schemes are provided. This yields optimality of the transformation-based jump-adapted quasi-Milstein scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信