复杂多保真数据融合的组合建模方法

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lei Tang, Feng Liu, Anping Wu, Yubo Li, Wanqiu Jiang, Qingfeng Wang and Jun Huang
{"title":"复杂多保真数据融合的组合建模方法","authors":"Lei Tang, Feng Liu, Anping Wu, Yubo Li, Wanqiu Jiang, Qingfeng Wang and Jun Huang","doi":"10.1088/2632-2153/ad718f","DOIUrl":null,"url":null,"abstract":"Currently, mainstream methods for multi-fidelity data fusion have achieved great success in many fields, but they generally suffer from poor scalability. Therefore, this paper proposes a combination modeling method for complex multi-fidelity data fusion, devoted to solving the modeling problems with three types of multi-fidelity data fusion, and explores a general solution for any n types of multi-fidelity data fusion. Different from the traditional direct modeling method—Multi-Fidelity Deep Neural Network (MFDNN)—the method is an indirect modeling method. The experimental results on three representative benchmark functions and the prediction tasks of SG6043 airfoil aerodynamic performance show that combination modeling has the following advantages: (1) It can quickly establish the mapping relationship between high, medium, and low fidelity data. (2) It can effectively solve the data imbalance problem in multi-fidelity modeling. (3) Compared with MFDNN, it has stronger noise resistance and higher prediction accuracy. Additionally, this paper discusses the scalability problem of the method when n = 4 and n = 5, providing a reference for further research on the combined modeling method.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A combined modeling method for complex multi-fidelity data fusion\",\"authors\":\"Lei Tang, Feng Liu, Anping Wu, Yubo Li, Wanqiu Jiang, Qingfeng Wang and Jun Huang\",\"doi\":\"10.1088/2632-2153/ad718f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, mainstream methods for multi-fidelity data fusion have achieved great success in many fields, but they generally suffer from poor scalability. Therefore, this paper proposes a combination modeling method for complex multi-fidelity data fusion, devoted to solving the modeling problems with three types of multi-fidelity data fusion, and explores a general solution for any n types of multi-fidelity data fusion. Different from the traditional direct modeling method—Multi-Fidelity Deep Neural Network (MFDNN)—the method is an indirect modeling method. The experimental results on three representative benchmark functions and the prediction tasks of SG6043 airfoil aerodynamic performance show that combination modeling has the following advantages: (1) It can quickly establish the mapping relationship between high, medium, and low fidelity data. (2) It can effectively solve the data imbalance problem in multi-fidelity modeling. (3) Compared with MFDNN, it has stronger noise resistance and higher prediction accuracy. Additionally, this paper discusses the scalability problem of the method when n = 4 and n = 5, providing a reference for further research on the combined modeling method.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad718f\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad718f","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

目前,多保真数据融合的主流方法在许多领域取得了巨大成功,但普遍存在可扩展性差的问题。因此,本文提出了一种复杂多保真度数据融合的组合建模方法,致力于解决三种多保真度数据融合的建模问题,并探索了适用于任意n种多保真度数据融合的通用解决方案。与传统的直接建模方法--多保真深度神经网络(MFDNN)不同,该方法是一种间接建模方法。在三个具有代表性的基准函数和 SG6043 机翼气动性能预测任务上的实验结果表明,组合建模具有以下优点:(1)可以快速建立高、中、低保真数据之间的映射关系。(2)能有效解决多保真度建模中的数据不平衡问题。(3) 与 MFDNN 相比,它具有更强的抗噪声能力和更高的预测精度。此外,本文还讨论了该方法在 n = 4 和 n = 5 时的可扩展性问题,为进一步研究组合建模方法提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A combined modeling method for complex multi-fidelity data fusion
Currently, mainstream methods for multi-fidelity data fusion have achieved great success in many fields, but they generally suffer from poor scalability. Therefore, this paper proposes a combination modeling method for complex multi-fidelity data fusion, devoted to solving the modeling problems with three types of multi-fidelity data fusion, and explores a general solution for any n types of multi-fidelity data fusion. Different from the traditional direct modeling method—Multi-Fidelity Deep Neural Network (MFDNN)—the method is an indirect modeling method. The experimental results on three representative benchmark functions and the prediction tasks of SG6043 airfoil aerodynamic performance show that combination modeling has the following advantages: (1) It can quickly establish the mapping relationship between high, medium, and low fidelity data. (2) It can effectively solve the data imbalance problem in multi-fidelity modeling. (3) Compared with MFDNN, it has stronger noise resistance and higher prediction accuracy. Additionally, this paper discusses the scalability problem of the method when n = 4 and n = 5, providing a reference for further research on the combined modeling method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信