Suresh Bishnoi, Ravinder Bhattoo, Jayadeva3jayadeva@ee.iitd.ac.in, Sayan Ranu, N M Anoop Krishnan
{"title":"利用哈密顿图神经网络直接从轨迹中发现符号定律","authors":"Suresh Bishnoi, Ravinder Bhattoo, Jayadeva3jayadeva@ee.iitd.ac.in, Sayan Ranu, N M Anoop Krishnan","doi":"10.1088/2632-2153/ad6be6","DOIUrl":null,"url":null,"abstract":"The time evolution of physical systems is described by differential equations, which depend on abstract quantities like energy and force. Traditionally, these quantities are derived as functionals based on observables such as positions and velocities. Discovering these governing symbolic laws is the key to comprehending the interactions in nature. Here, we present a Hamiltonian graph neural network (<sc>Hgnn</sc>), a physics-enforced <sc>Gnn</sc> that learns the dynamics of systems directly from their trajectory. We demonstrate the performance of <sc>Hgnn</sc> on <inline-formula>\n<tex-math><?CDATA $n-$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"mlstad6be6ieqn1.gif\"></inline-graphic></inline-formula>springs, <inline-formula>\n<tex-math><?CDATA $n-$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"mlstad6be6ieqn2.gif\"></inline-graphic></inline-formula>pendulums, gravitational systems, and binary Lennard Jones systems; <sc>Hgnn</sc> learns the dynamics in excellent agreement with the ground truth from small amounts of data. We also evaluate the ability of <sc>Hgnn</sc> to generalize to larger system sizes, and to a hybrid spring-pendulum system that is a combination of two original systems (spring and pendulum) on which the models are trained independently. Finally, employing symbolic regression on the learned <sc>Hgnn</sc>, we infer the underlying equations relating to the energy functionals, even for complex systems such as the binary Lennard-Jones liquid. Our framework facilitates the interpretable discovery of interaction laws directly from physical system trajectories. Furthermore, this approach can be extended to other systems with topology-dependent dynamics, such as cells, polydisperse gels, or deformable bodies.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"210 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering symbolic laws directly from trajectories with hamiltonian graph neural networks\",\"authors\":\"Suresh Bishnoi, Ravinder Bhattoo, Jayadeva3jayadeva@ee.iitd.ac.in, Sayan Ranu, N M Anoop Krishnan\",\"doi\":\"10.1088/2632-2153/ad6be6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The time evolution of physical systems is described by differential equations, which depend on abstract quantities like energy and force. Traditionally, these quantities are derived as functionals based on observables such as positions and velocities. Discovering these governing symbolic laws is the key to comprehending the interactions in nature. Here, we present a Hamiltonian graph neural network (<sc>Hgnn</sc>), a physics-enforced <sc>Gnn</sc> that learns the dynamics of systems directly from their trajectory. We demonstrate the performance of <sc>Hgnn</sc> on <inline-formula>\\n<tex-math><?CDATA $n-$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\\\"mlstad6be6ieqn1.gif\\\"></inline-graphic></inline-formula>springs, <inline-formula>\\n<tex-math><?CDATA $n-$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\\\"mlstad6be6ieqn2.gif\\\"></inline-graphic></inline-formula>pendulums, gravitational systems, and binary Lennard Jones systems; <sc>Hgnn</sc> learns the dynamics in excellent agreement with the ground truth from small amounts of data. We also evaluate the ability of <sc>Hgnn</sc> to generalize to larger system sizes, and to a hybrid spring-pendulum system that is a combination of two original systems (spring and pendulum) on which the models are trained independently. Finally, employing symbolic regression on the learned <sc>Hgnn</sc>, we infer the underlying equations relating to the energy functionals, even for complex systems such as the binary Lennard-Jones liquid. Our framework facilitates the interpretable discovery of interaction laws directly from physical system trajectories. Furthermore, this approach can be extended to other systems with topology-dependent dynamics, such as cells, polydisperse gels, or deformable bodies.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"210 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad6be6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad6be6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Discovering symbolic laws directly from trajectories with hamiltonian graph neural networks
The time evolution of physical systems is described by differential equations, which depend on abstract quantities like energy and force. Traditionally, these quantities are derived as functionals based on observables such as positions and velocities. Discovering these governing symbolic laws is the key to comprehending the interactions in nature. Here, we present a Hamiltonian graph neural network (Hgnn), a physics-enforced Gnn that learns the dynamics of systems directly from their trajectory. We demonstrate the performance of Hgnn on n−springs, n−pendulums, gravitational systems, and binary Lennard Jones systems; Hgnn learns the dynamics in excellent agreement with the ground truth from small amounts of data. We also evaluate the ability of Hgnn to generalize to larger system sizes, and to a hybrid spring-pendulum system that is a combination of two original systems (spring and pendulum) on which the models are trained independently. Finally, employing symbolic regression on the learned Hgnn, we infer the underlying equations relating to the energy functionals, even for complex systems such as the binary Lennard-Jones liquid. Our framework facilitates the interpretable discovery of interaction laws directly from physical system trajectories. Furthermore, this approach can be extended to other systems with topology-dependent dynamics, such as cells, polydisperse gels, or deformable bodies.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.