智能像素传感器:利用深度学习对像素群进行传感器上过滤

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jieun Yoo, Jennet Dickinson, Morris Swartz, Giuseppe Di Guglielmo, Alice Bean, Douglas Berry, Manuel Blanco Valentin, Karri DiPetrillo, Farah Fahim, Lindsey Gray, James Hirschauer, Shruti R Kulkarni, Ron Lipton, Petar Maksimovic, Corrinne Mills, Mark S Neubauer, Benjamin Parpillon, Gauri Pradhan, Chinar Syal, Nhan Tran, Dahai Wen, Aaron Young
{"title":"智能像素传感器:利用深度学习对像素群进行传感器上过滤","authors":"Jieun Yoo, Jennet Dickinson, Morris Swartz, Giuseppe Di Guglielmo, Alice Bean, Douglas Berry, Manuel Blanco Valentin, Karri DiPetrillo, Farah Fahim, Lindsey Gray, James Hirschauer, Shruti R Kulkarni, Ron Lipton, Petar Maksimovic, Corrinne Mills, Mark S Neubauer, Benjamin Parpillon, Gauri Pradhan, Chinar Syal, Nhan Tran, Dahai Wen, Aaron Young","doi":"10.1088/2632-2153/ad6a00","DOIUrl":null,"url":null,"abstract":"Highly granular pixel detectors allow for increasingly precise measurements of charged particle tracks. Next-generation detectors require that pixel sizes will be further reduced, leading to unprecedented data rates exceeding those foreseen at the High- Luminosity Large Hadron Collider. Signal processing that handles data incoming at a rate of <inline-formula>\n<tex-math><?CDATA $\\mathcal{O}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>O</mml:mi></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"mlstad6a00ieqn1.gif\"></inline-graphic></inline-formula>(40 MHz) and intelligently reduces the data within the pixelated region of the detector <italic toggle=\"yes\">at rate</italic> will enhance physics performance at high luminosity and enable physics analyses that are not currently possible. Using the shape of charge clusters deposited in an array of small pixels, the physical properties of the traversing particle can be extracted with locally customized neural networks. In this first demonstration, we present a neural network that can be embedded into the on-sensor readout and filter out hits from low momentum tracks, reducing the detector’s data volume by 57.1%–75.7%. The network is designed and simulated as a custom readout integrated circuit with 28 nm CMOS technology and is expected to operate at less than 300 <inline-formula>\n<tex-math><?CDATA $\\mu W$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi>μ</mml:mi><mml:mi>W</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\"mlstad6a00ieqn2.gif\"></inline-graphic></inline-formula> with an area of less than 0.2 mm<sup>2</sup>. The temporal development of charge clusters is investigated to demonstrate possible future performance gains, and there is also a discussion of future algorithmic and technological improvements that could enhance efficiency, data reduction, and power per area.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart pixel sensors: towards on-sensor filtering of pixel clusters with deep learning\",\"authors\":\"Jieun Yoo, Jennet Dickinson, Morris Swartz, Giuseppe Di Guglielmo, Alice Bean, Douglas Berry, Manuel Blanco Valentin, Karri DiPetrillo, Farah Fahim, Lindsey Gray, James Hirschauer, Shruti R Kulkarni, Ron Lipton, Petar Maksimovic, Corrinne Mills, Mark S Neubauer, Benjamin Parpillon, Gauri Pradhan, Chinar Syal, Nhan Tran, Dahai Wen, Aaron Young\",\"doi\":\"10.1088/2632-2153/ad6a00\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly granular pixel detectors allow for increasingly precise measurements of charged particle tracks. Next-generation detectors require that pixel sizes will be further reduced, leading to unprecedented data rates exceeding those foreseen at the High- Luminosity Large Hadron Collider. Signal processing that handles data incoming at a rate of <inline-formula>\\n<tex-math><?CDATA $\\\\mathcal{O}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mrow><mml:mi>O</mml:mi></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\\\"mlstad6a00ieqn1.gif\\\"></inline-graphic></inline-formula>(40 MHz) and intelligently reduces the data within the pixelated region of the detector <italic toggle=\\\"yes\\\">at rate</italic> will enhance physics performance at high luminosity and enable physics analyses that are not currently possible. Using the shape of charge clusters deposited in an array of small pixels, the physical properties of the traversing particle can be extracted with locally customized neural networks. In this first demonstration, we present a neural network that can be embedded into the on-sensor readout and filter out hits from low momentum tracks, reducing the detector’s data volume by 57.1%–75.7%. The network is designed and simulated as a custom readout integrated circuit with 28 nm CMOS technology and is expected to operate at less than 300 <inline-formula>\\n<tex-math><?CDATA $\\\\mu W$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>μ</mml:mi><mml:mi>W</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href=\\\"mlstad6a00ieqn2.gif\\\"></inline-graphic></inline-formula> with an area of less than 0.2 mm<sup>2</sup>. The temporal development of charge clusters is investigated to demonstrate possible future performance gains, and there is also a discussion of future algorithmic and technological improvements that could enhance efficiency, data reduction, and power per area.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad6a00\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad6a00","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

高精细像素探测器可以对带电粒子轨道进行越来越精确的测量。下一代探测器要求进一步缩小像素尺寸,这将导致前所未有的数据传输速率,超过高亮度大型强子对撞机的预期数据传输速率。信号处理如果能以 O(40 MHz) 的速率处理输入的数据,并在探测器的像素化区域内智能地按速率缩小数据,将提高高亮度下的物理学性能,并实现目前无法实现的物理学分析。利用沉积在小像素阵列中的电荷团的形状,可以通过本地定制的神经网络提取穿越粒子的物理特性。在首次演示中,我们介绍了一种神经网络,它可以嵌入到传感器读出中,过滤掉低动量轨道的命中率,从而将探测器的数据量减少 57.1%-75.7%。该网络是以 28 纳米 CMOS 技术设计和模拟的定制读出集成电路,预计运行功耗小于 300 μW,面积小于 0.2 mm2。对电荷簇的时间发展进行了研究,以展示未来可能的性能提升,同时还讨论了未来可提高效率、减少数据和单位面积功耗的算法和技术改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart pixel sensors: towards on-sensor filtering of pixel clusters with deep learning
Highly granular pixel detectors allow for increasingly precise measurements of charged particle tracks. Next-generation detectors require that pixel sizes will be further reduced, leading to unprecedented data rates exceeding those foreseen at the High- Luminosity Large Hadron Collider. Signal processing that handles data incoming at a rate of O(40 MHz) and intelligently reduces the data within the pixelated region of the detector at rate will enhance physics performance at high luminosity and enable physics analyses that are not currently possible. Using the shape of charge clusters deposited in an array of small pixels, the physical properties of the traversing particle can be extracted with locally customized neural networks. In this first demonstration, we present a neural network that can be embedded into the on-sensor readout and filter out hits from low momentum tracks, reducing the detector’s data volume by 57.1%–75.7%. The network is designed and simulated as a custom readout integrated circuit with 28 nm CMOS technology and is expected to operate at less than 300  μW with an area of less than 0.2 mm2. The temporal development of charge clusters is investigated to demonstrate possible future performance gains, and there is also a discussion of future algorithmic and technological improvements that could enhance efficiency, data reduction, and power per area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信