Yue Yu, Jianqiu Wang, Zhihao Chen, Yang Xiao, Zhen Fu, Tao Zhang, Haoyu Yuan, Xiao-Tao Hao, Long Ye, Yong Cui, Jianhui Hou
{"title":"基于萘二亚胺的阴极中间膜材料使有机光伏电池的效率达到 20.2","authors":"Yue Yu, Jianqiu Wang, Zhihao Chen, Yang Xiao, Zhen Fu, Tao Zhang, Haoyu Yuan, Xiao-Tao Hao, Long Ye, Yong Cui, Jianhui Hou","doi":"10.1007/s11426-024-2244-8","DOIUrl":null,"url":null,"abstract":"<div><p>Cathode interlayer (CIL) materials play an important role in improving the power conversion efficiency (PCE) of organic photovoltaic (OPV) cells. However, the current understanding of the structure-property relationship in CIL materials is limited, and systematic studies in this regard are scarce. Here, two new CIL materials, NDI-PhC4 and NDI-PhC6 were synthesized by varying the alkylamine chain length on the NDI-Ph core. Our investigation reveals a systematic variation in the physical and chemical properties of these materials with increasing alkylamine chain length. Specifically, we observe a sequential decrease in melting point and self-doping effect, accompanied by an enhancement in crystallinity. Among these CIL materials, NDI-PhC4 has a notable balance across various performance metrics. It also exhibits excellent surface modification capabilities, leading to a low surface roughness. Consequently, OPV cells based on NDI-PhC4 achieve a PCE of 20.2%, which is one of the highest reported efficiencies for OPV cells. In addition, the appropriate melting point of NDI-PhC4 contributes to the excellent stability of OPV cells.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 12","pages":"4194 - 4201"},"PeriodicalIF":10.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Naphthalene diimide-based cathode interlayer material enables 20.2% efficiency in organic photovoltaic cells\",\"authors\":\"Yue Yu, Jianqiu Wang, Zhihao Chen, Yang Xiao, Zhen Fu, Tao Zhang, Haoyu Yuan, Xiao-Tao Hao, Long Ye, Yong Cui, Jianhui Hou\",\"doi\":\"10.1007/s11426-024-2244-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cathode interlayer (CIL) materials play an important role in improving the power conversion efficiency (PCE) of organic photovoltaic (OPV) cells. However, the current understanding of the structure-property relationship in CIL materials is limited, and systematic studies in this regard are scarce. Here, two new CIL materials, NDI-PhC4 and NDI-PhC6 were synthesized by varying the alkylamine chain length on the NDI-Ph core. Our investigation reveals a systematic variation in the physical and chemical properties of these materials with increasing alkylamine chain length. Specifically, we observe a sequential decrease in melting point and self-doping effect, accompanied by an enhancement in crystallinity. Among these CIL materials, NDI-PhC4 has a notable balance across various performance metrics. It also exhibits excellent surface modification capabilities, leading to a low surface roughness. Consequently, OPV cells based on NDI-PhC4 achieve a PCE of 20.2%, which is one of the highest reported efficiencies for OPV cells. In addition, the appropriate melting point of NDI-PhC4 contributes to the excellent stability of OPV cells.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"67 12\",\"pages\":\"4194 - 4201\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-024-2244-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2244-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Naphthalene diimide-based cathode interlayer material enables 20.2% efficiency in organic photovoltaic cells
Cathode interlayer (CIL) materials play an important role in improving the power conversion efficiency (PCE) of organic photovoltaic (OPV) cells. However, the current understanding of the structure-property relationship in CIL materials is limited, and systematic studies in this regard are scarce. Here, two new CIL materials, NDI-PhC4 and NDI-PhC6 were synthesized by varying the alkylamine chain length on the NDI-Ph core. Our investigation reveals a systematic variation in the physical and chemical properties of these materials with increasing alkylamine chain length. Specifically, we observe a sequential decrease in melting point and self-doping effect, accompanied by an enhancement in crystallinity. Among these CIL materials, NDI-PhC4 has a notable balance across various performance metrics. It also exhibits excellent surface modification capabilities, leading to a low surface roughness. Consequently, OPV cells based on NDI-PhC4 achieve a PCE of 20.2%, which is one of the highest reported efficiencies for OPV cells. In addition, the appropriate melting point of NDI-PhC4 contributes to the excellent stability of OPV cells.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.