对 F. Chiarenza 和 M. Frasca 论文的评论

IF 0.8 3区 数学 Q2 MATHEMATICS
N. Krylov
{"title":"对 F. Chiarenza 和 M. Frasca 论文的评论","authors":"N. Krylov","doi":"10.1090/proc/16885","DOIUrl":null,"url":null,"abstract":"<p>In 1990 F. Chiarenza and M. Frasca published a paper in which they generalized a result of C. Fefferman on estimates of the integral of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue b u EndAbsoluteValue Superscript p\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>b</mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|bu|^{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> through the integral of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue upper D u EndAbsoluteValue Superscript p\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>D</mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|Du|^{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Formally their proof is valid only for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than-or-equal-to 3\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d\\geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We present here further generalization with a different proof in which <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\"application/x-tex\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is replaced with the fractional power of the Laplacian for any dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">d\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"2 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on a paper by F. Chiarenza and M. Frasca\",\"authors\":\"N. Krylov\",\"doi\":\"10.1090/proc/16885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1990 F. Chiarenza and M. Frasca published a paper in which they generalized a result of C. Fefferman on estimates of the integral of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue b u EndAbsoluteValue Superscript p\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>b</mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">|bu|^{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> through the integral of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue upper D u EndAbsoluteValue Superscript p\\\"> <mml:semantics> <mml:mrow> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mi>D</mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">|</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">|Du|^{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than 1\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Formally their proof is valid only for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d greater-than-or-equal-to 3\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">d\\\\geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We present here further generalization with a different proof in which <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is replaced with the fractional power of the Laplacian for any dimension <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d greater-than-or-equal-to 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">d\\\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16885\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16885","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1990 年,F. Chiarenza 和 M. Frasca 发表论文,将 C. Fefferman 关于 p > 1 p>1 时通过 | D u | p |Du|^{p} 的积分来估计 | b u | p |bu|^{p} 的积分的结果加以推广。形式上,他们的证明仅对 d ≥ 3 d\geq 3 有效。我们在这里用一个不同的证明来进一步概括,在这个证明中,对于任何维度 d ≥ 2 d\geq 2,D D 被替换为拉普拉奇的分数幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A remark on a paper by F. Chiarenza and M. Frasca

In 1990 F. Chiarenza and M. Frasca published a paper in which they generalized a result of C. Fefferman on estimates of the integral of | b u | p |bu|^{p} through the integral of | D u | p |Du|^{p} for p > 1 p>1 . Formally their proof is valid only for d 3 d\geq 3 . We present here further generalization with a different proof in which D D is replaced with the fractional power of the Laplacian for any dimension d 2 d\geq 2 .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信