Yingzhen Zhang, Wei Zhang, Jianying Huang, Weilong Cai and Yuekun Lai
{"title":"铈诱导的 NiS 双功能催化剂转化:增强尿素氧化与电解氢气的结合","authors":"Yingzhen Zhang, Wei Zhang, Jianying Huang, Weilong Cai and Yuekun Lai","doi":"10.1039/D4EY00119B","DOIUrl":null,"url":null,"abstract":"<p >The treatment of urea-containing wastewater is crucial for sustainable environmental development, given its low theoretical thermodynamic barrier (0.37 V), which can effectively replace the OER process in water electrolysis and enhance hydrogen production efficiency. Nevertheless, designing dual-functional catalysts capable of effectively performing catalytic tasks remains a challenge. Herein, in this work a cerium-doped nickel sulfide (Ce–NiS) catalyst is synthesized by an electrodeposition method, which is used as a bifunctional catalyst for electrolytic hydrogen production from urea-containing wastewater. Ce–NiS exhibits a higher Faradaic efficiency (FE, 91.39%) compared to NiS (67.52%) for hydrogen production from simulated urea-containing wastewater. <em>In situ</em> Raman spectroscopy reveals that Ce doping induces the reconstruction of NiS into high-valence nickel species (NiOOH), which is considered the actual active center for the electrochemical UOR process. Notably, the apparent electrochemical activation energy for the UOR decreased from 8.72 kJ mol<small><sup>−1</sup></small> (NiS) to 5.68 kJ mol<small><sup>−1</sup></small> (Ce–NiS), indicating that doping with Ce significantly reduces the energy barrier for the UOR and enhances the catalytic urea oxidation capability. This study employs a strategy of rare-earth metal (Ce) doping to enhance the efficiency of urea-coupled electrolytic hydrogen production, providing promising insights for energy recovery from urea-containing wastewater and the development of high-performance dual-functional catalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00119b?page=search","citationCount":"0","resultStr":"{\"title\":\"Ce-induced NiS bifunctional catalyst transformation: enhancing urea oxidation coupled with hydrogen electrolysis†\",\"authors\":\"Yingzhen Zhang, Wei Zhang, Jianying Huang, Weilong Cai and Yuekun Lai\",\"doi\":\"10.1039/D4EY00119B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The treatment of urea-containing wastewater is crucial for sustainable environmental development, given its low theoretical thermodynamic barrier (0.37 V), which can effectively replace the OER process in water electrolysis and enhance hydrogen production efficiency. Nevertheless, designing dual-functional catalysts capable of effectively performing catalytic tasks remains a challenge. Herein, in this work a cerium-doped nickel sulfide (Ce–NiS) catalyst is synthesized by an electrodeposition method, which is used as a bifunctional catalyst for electrolytic hydrogen production from urea-containing wastewater. Ce–NiS exhibits a higher Faradaic efficiency (FE, 91.39%) compared to NiS (67.52%) for hydrogen production from simulated urea-containing wastewater. <em>In situ</em> Raman spectroscopy reveals that Ce doping induces the reconstruction of NiS into high-valence nickel species (NiOOH), which is considered the actual active center for the electrochemical UOR process. Notably, the apparent electrochemical activation energy for the UOR decreased from 8.72 kJ mol<small><sup>−1</sup></small> (NiS) to 5.68 kJ mol<small><sup>−1</sup></small> (Ce–NiS), indicating that doping with Ce significantly reduces the energy barrier for the UOR and enhances the catalytic urea oxidation capability. This study employs a strategy of rare-earth metal (Ce) doping to enhance the efficiency of urea-coupled electrolytic hydrogen production, providing promising insights for energy recovery from urea-containing wastewater and the development of high-performance dual-functional catalysts.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00119b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00119b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00119b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于尿素的理论热力学势垒较低(0.37 V),处理含尿素废水对可持续环境发展至关重要,它可以有效取代水电解中的 OER 过程,提高制氢效率。然而,设计能够有效执行催化任务的双功能催化剂仍然是一项挑战。本研究采用电沉积法合成了掺铈硫化镍(Ce-NiS)催化剂,并将其作为双功能催化剂用于含尿素废水的电解制氢。在模拟含尿素废水的制氢过程中,Ce-NiS 的法拉第效率(FE,91.39%)高于 NiS(67.52%)。原位拉曼光谱显示,掺杂 Ce 会促使 NiS 重构为高价镍物种(NiOOH),而高价镍物种被认为是电化学 UOR 过程的实际活性中心。值得注意的是,UOR 的表观电化学活化能从 8.72 kJ mol-1(NiS)降至 5.68 kJ mol-1(Ce-NiS),这表明掺杂 Ce 显著降低了 UOR 的能垒,增强了催化尿素氧化的能力。本研究采用稀土金属(Ce)掺杂策略提高了尿素耦合电解制氢的效率,为从含尿素废水中回收能量和开发高性能双功能催化剂提供了很好的启示。
The treatment of urea-containing wastewater is crucial for sustainable environmental development, given its low theoretical thermodynamic barrier (0.37 V), which can effectively replace the OER process in water electrolysis and enhance hydrogen production efficiency. Nevertheless, designing dual-functional catalysts capable of effectively performing catalytic tasks remains a challenge. Herein, in this work a cerium-doped nickel sulfide (Ce–NiS) catalyst is synthesized by an electrodeposition method, which is used as a bifunctional catalyst for electrolytic hydrogen production from urea-containing wastewater. Ce–NiS exhibits a higher Faradaic efficiency (FE, 91.39%) compared to NiS (67.52%) for hydrogen production from simulated urea-containing wastewater. In situ Raman spectroscopy reveals that Ce doping induces the reconstruction of NiS into high-valence nickel species (NiOOH), which is considered the actual active center for the electrochemical UOR process. Notably, the apparent electrochemical activation energy for the UOR decreased from 8.72 kJ mol−1 (NiS) to 5.68 kJ mol−1 (Ce–NiS), indicating that doping with Ce significantly reduces the energy barrier for the UOR and enhances the catalytic urea oxidation capability. This study employs a strategy of rare-earth metal (Ce) doping to enhance the efficiency of urea-coupled electrolytic hydrogen production, providing promising insights for energy recovery from urea-containing wastewater and the development of high-performance dual-functional catalysts.