Hefei Yang, Yuanrui Wang, Le-Cheng Wang and Xiao-Feng Wu
{"title":"可见光促进未活化烯烃的氧羰基化反应","authors":"Hefei Yang, Yuanrui Wang, Le-Cheng Wang and Xiao-Feng Wu","doi":"10.1039/D4EY00149D","DOIUrl":null,"url":null,"abstract":"<p >Oxygen-centered radicals are highly reactive and have played a key role in organic transformations since their discovery. Nowadays, the direct difunctionalization of alkenes involving oxygen-centered radicals is still underdeveloped due to the inherent properties of oxygen-centered radicals, especially the intermolecular radical addition of unactivated alkenes. Herein, we report an intermolecular oxygen-centered radical addition carbonylation reaction of unactivated alkenes under visible light irradiation. The transformation was initiated with the direct addition of alkoxycarbonyloxy radicals to alkenes, which then underwent aromatic migration under the intervention of carbon monoxide to achieve the targeted oxycarbonylation products.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00149d?page=search","citationCount":"0","resultStr":"{\"title\":\"Visible light-promoted oxycarbonylation of unactivated alkenes†\",\"authors\":\"Hefei Yang, Yuanrui Wang, Le-Cheng Wang and Xiao-Feng Wu\",\"doi\":\"10.1039/D4EY00149D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Oxygen-centered radicals are highly reactive and have played a key role in organic transformations since their discovery. Nowadays, the direct difunctionalization of alkenes involving oxygen-centered radicals is still underdeveloped due to the inherent properties of oxygen-centered radicals, especially the intermolecular radical addition of unactivated alkenes. Herein, we report an intermolecular oxygen-centered radical addition carbonylation reaction of unactivated alkenes under visible light irradiation. The transformation was initiated with the direct addition of alkoxycarbonyloxy radicals to alkenes, which then underwent aromatic migration under the intervention of carbon monoxide to achieve the targeted oxycarbonylation products.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00149d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00149d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00149d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visible light-promoted oxycarbonylation of unactivated alkenes†
Oxygen-centered radicals are highly reactive and have played a key role in organic transformations since their discovery. Nowadays, the direct difunctionalization of alkenes involving oxygen-centered radicals is still underdeveloped due to the inherent properties of oxygen-centered radicals, especially the intermolecular radical addition of unactivated alkenes. Herein, we report an intermolecular oxygen-centered radical addition carbonylation reaction of unactivated alkenes under visible light irradiation. The transformation was initiated with the direct addition of alkoxycarbonyloxy radicals to alkenes, which then underwent aromatic migration under the intervention of carbon monoxide to achieve the targeted oxycarbonylation products.