Kohta Nomoto, Takuya Okazaki, Kosuke Beppu, Tetsuya Shishido and Fumiaki Amano
{"title":"通过碳酸氢盐转化高选择性地形成甲酸盐","authors":"Kohta Nomoto, Takuya Okazaki, Kosuke Beppu, Tetsuya Shishido and Fumiaki Amano","doi":"10.1039/D4EY00122B","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalytic conversion of liquid bicarbonate feedstock to formate is a promising reactive CO<small><sub>2</sub></small> capture technology. However, bicarbonate-fed electrolyzers have shown insufficient faradaic efficiencies (FEs) for formate production due to competing hydrogen evolution reactions. In this study, we developed a bicarbonate electrolyzer incorporating a porous membrane between a proton exchange membrane (PEM) and a hydrophilic bismuth cathode. By employing the intermediate membrane to enhance <em>in situ</em> CO<small><sub>2</sub></small> generation from 3.0 M KHCO<small><sub>3</sub></small>, we achieved a formate FE of 84.6% even at a high current density of 300 mA cm<small><sup>−2</sup></small>. This electrolyzer also achieved high CO<small><sub>2</sub></small> utilization efficiency (89%) and low full-cell voltage (3.1 V) at 100 mA cm<small><sup>−2</sup></small> owing to the rational designs of membrane electrode assemblies. Bicarbonate conversion to formate is accelerated through <em>in situ</em> CO<small><sub>2</sub></small> generation and selective CO<small><sub>2</sub></small> reduction reaction at a gas–liquid–catalyst triple-phase boundary. Additionally, the bicarbonate electrolyzer demonstrates high CO<small><sub>2</sub></small> utilization efficiency, long-term stability, and production of pure formate salt.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00122b?page=search","citationCount":"0","resultStr":"{\"title\":\"Highly selective formate formation via bicarbonate conversions†\",\"authors\":\"Kohta Nomoto, Takuya Okazaki, Kosuke Beppu, Tetsuya Shishido and Fumiaki Amano\",\"doi\":\"10.1039/D4EY00122B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrocatalytic conversion of liquid bicarbonate feedstock to formate is a promising reactive CO<small><sub>2</sub></small> capture technology. However, bicarbonate-fed electrolyzers have shown insufficient faradaic efficiencies (FEs) for formate production due to competing hydrogen evolution reactions. In this study, we developed a bicarbonate electrolyzer incorporating a porous membrane between a proton exchange membrane (PEM) and a hydrophilic bismuth cathode. By employing the intermediate membrane to enhance <em>in situ</em> CO<small><sub>2</sub></small> generation from 3.0 M KHCO<small><sub>3</sub></small>, we achieved a formate FE of 84.6% even at a high current density of 300 mA cm<small><sup>−2</sup></small>. This electrolyzer also achieved high CO<small><sub>2</sub></small> utilization efficiency (89%) and low full-cell voltage (3.1 V) at 100 mA cm<small><sup>−2</sup></small> owing to the rational designs of membrane electrode assemblies. Bicarbonate conversion to formate is accelerated through <em>in situ</em> CO<small><sub>2</sub></small> generation and selective CO<small><sub>2</sub></small> reduction reaction at a gas–liquid–catalyst triple-phase boundary. Additionally, the bicarbonate electrolyzer demonstrates high CO<small><sub>2</sub></small> utilization efficiency, long-term stability, and production of pure formate salt.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00122b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00122b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00122b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
将液态碳酸氢盐原料电催化转化为甲酸盐是一种前景广阔的反应性二氧化碳捕集技术。然而,由于氢进化反应的竞争,以碳酸氢盐为原料的电解槽生产甲酸盐的法拉第效率(FE)不足。在本研究中,我们开发了一种在质子交换膜(PEM)和亲水铋阴极之间加入多孔膜的碳酸氢盐电解槽。通过使用中间膜来提高 3.0 M KHCO3 中 CO2 的原位生成,即使在 300 mA cm-2 的高电流密度下,我们也实现了 84.6% 的甲酸酯 FE。由于合理设计了膜电极组件,该电解槽还实现了较高的二氧化碳利用效率(89%)和较低的全电池电压(3.1 V)(100 mA cm-2)。通过在气-液-催化剂三相边界原位生成二氧化碳和选择性二氧化碳还原反应,加速了碳酸氢盐向甲酸盐的转化。此外,该碳酸氢盐电解槽还具有较高的二氧化碳利用效率、长期稳定性和纯甲酸盐产量。
Highly selective formate formation via bicarbonate conversions†
Electrocatalytic conversion of liquid bicarbonate feedstock to formate is a promising reactive CO2 capture technology. However, bicarbonate-fed electrolyzers have shown insufficient faradaic efficiencies (FEs) for formate production due to competing hydrogen evolution reactions. In this study, we developed a bicarbonate electrolyzer incorporating a porous membrane between a proton exchange membrane (PEM) and a hydrophilic bismuth cathode. By employing the intermediate membrane to enhance in situ CO2 generation from 3.0 M KHCO3, we achieved a formate FE of 84.6% even at a high current density of 300 mA cm−2. This electrolyzer also achieved high CO2 utilization efficiency (89%) and low full-cell voltage (3.1 V) at 100 mA cm−2 owing to the rational designs of membrane electrode assemblies. Bicarbonate conversion to formate is accelerated through in situ CO2 generation and selective CO2 reduction reaction at a gas–liquid–catalyst triple-phase boundary. Additionally, the bicarbonate electrolyzer demonstrates high CO2 utilization efficiency, long-term stability, and production of pure formate salt.