Yuting Liu, Lorenzo Brezzi, Zhipeng Liang, Fabio Gabrieli, Zihan Zhou, Simonetta Cola
{"title":"利用图像分析和 LSTM 方法预报降雪和降雨引发的滑坡的表层位移","authors":"Yuting Liu, Lorenzo Brezzi, Zhipeng Liang, Fabio Gabrieli, Zihan Zhou, Simonetta Cola","doi":"10.1007/s10346-024-02328-3","DOIUrl":null,"url":null,"abstract":"<p>Landslide-prone areas, predominantly located in mountainous regions with abundant rainfall, present unique challenges when subject to significant snowfall at high altitudes. Understanding the role of snow accumulation and melting, alongside rainfall and other environmental variables like temperature and humidity, is crucial for assessing landslide stability. To pursue this aim, the present study focuses first on the quantification of snow accumulated on a slope through a simple parameter obtained with image processing. Then, this parameter is included in a slope displacement prediction analysis carried out with long short-term memory (LSTM) neural network. By employing image processing algorithms and filtering out noise from white-shown rocks, the methodology evaluates the percentage of snow cover in RGB images. Subsequent LSTM forecasts of landslide displacement utilize 28-day historical data on rainfall, snow, and slope movements. The presented procedure is applied to the case of a deep-seated landslide in Italy, a site that in winter 2020–2021 experienced heavy snowfall, leading to significant snow accumulation on the slope. These episodes motivated a study aimed at forecasting the superficial displacements of this landslide, considering the presence of snow both at that time and in the following days, along with humidity and temperature. This approach indirectly incorporates snow accumulation and potential melting phenomena into the model. Although the subsequent winters were characterized by reduced snowfall, including this information in the LSTM model for the period characterized by snow on the slope demonstrated a dependency of the predictions on this parameter, thus suggesting that snow is indeed a significant factor in accelerating landslide movements. In this context, detecting snow and incorporating it into the predictive model emerges as a significant aspect for considering the effects of winter snowfall. The method aims to propose an innovative strategy that can be applied in the future to the study of the landslide analyzed in this paper during upcoming winters characterized by significant snowfall, as well as to other case studies of landslides at high altitudes that lack precise snow precipitation recording instruments.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"26 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image analysis and LSTM methods for forecasting surficial displacements of a landslide triggered by snowfall and rainfall\",\"authors\":\"Yuting Liu, Lorenzo Brezzi, Zhipeng Liang, Fabio Gabrieli, Zihan Zhou, Simonetta Cola\",\"doi\":\"10.1007/s10346-024-02328-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Landslide-prone areas, predominantly located in mountainous regions with abundant rainfall, present unique challenges when subject to significant snowfall at high altitudes. Understanding the role of snow accumulation and melting, alongside rainfall and other environmental variables like temperature and humidity, is crucial for assessing landslide stability. To pursue this aim, the present study focuses first on the quantification of snow accumulated on a slope through a simple parameter obtained with image processing. Then, this parameter is included in a slope displacement prediction analysis carried out with long short-term memory (LSTM) neural network. By employing image processing algorithms and filtering out noise from white-shown rocks, the methodology evaluates the percentage of snow cover in RGB images. Subsequent LSTM forecasts of landslide displacement utilize 28-day historical data on rainfall, snow, and slope movements. The presented procedure is applied to the case of a deep-seated landslide in Italy, a site that in winter 2020–2021 experienced heavy snowfall, leading to significant snow accumulation on the slope. These episodes motivated a study aimed at forecasting the superficial displacements of this landslide, considering the presence of snow both at that time and in the following days, along with humidity and temperature. This approach indirectly incorporates snow accumulation and potential melting phenomena into the model. Although the subsequent winters were characterized by reduced snowfall, including this information in the LSTM model for the period characterized by snow on the slope demonstrated a dependency of the predictions on this parameter, thus suggesting that snow is indeed a significant factor in accelerating landslide movements. In this context, detecting snow and incorporating it into the predictive model emerges as a significant aspect for considering the effects of winter snowfall. The method aims to propose an innovative strategy that can be applied in the future to the study of the landslide analyzed in this paper during upcoming winters characterized by significant snowfall, as well as to other case studies of landslides at high altitudes that lack precise snow precipitation recording instruments.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-024-02328-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02328-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Image analysis and LSTM methods for forecasting surficial displacements of a landslide triggered by snowfall and rainfall
Landslide-prone areas, predominantly located in mountainous regions with abundant rainfall, present unique challenges when subject to significant snowfall at high altitudes. Understanding the role of snow accumulation and melting, alongside rainfall and other environmental variables like temperature and humidity, is crucial for assessing landslide stability. To pursue this aim, the present study focuses first on the quantification of snow accumulated on a slope through a simple parameter obtained with image processing. Then, this parameter is included in a slope displacement prediction analysis carried out with long short-term memory (LSTM) neural network. By employing image processing algorithms and filtering out noise from white-shown rocks, the methodology evaluates the percentage of snow cover in RGB images. Subsequent LSTM forecasts of landslide displacement utilize 28-day historical data on rainfall, snow, and slope movements. The presented procedure is applied to the case of a deep-seated landslide in Italy, a site that in winter 2020–2021 experienced heavy snowfall, leading to significant snow accumulation on the slope. These episodes motivated a study aimed at forecasting the superficial displacements of this landslide, considering the presence of snow both at that time and in the following days, along with humidity and temperature. This approach indirectly incorporates snow accumulation and potential melting phenomena into the model. Although the subsequent winters were characterized by reduced snowfall, including this information in the LSTM model for the period characterized by snow on the slope demonstrated a dependency of the predictions on this parameter, thus suggesting that snow is indeed a significant factor in accelerating landslide movements. In this context, detecting snow and incorporating it into the predictive model emerges as a significant aspect for considering the effects of winter snowfall. The method aims to propose an innovative strategy that can be applied in the future to the study of the landslide analyzed in this paper during upcoming winters characterized by significant snowfall, as well as to other case studies of landslides at high altitudes that lack precise snow precipitation recording instruments.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database