{"title":"中国青藏高原东北缘工程走廊滑坡:全面盘点与机理分析","authors":"Jing Zhang, Jie Chen, Chengqiu Li, Wei Lu, Junming Hao, Pengfei Niu, Kechang Li, Siyuan Ma, Ren-mao Yuan","doi":"10.1007/s10346-024-02341-6","DOIUrl":null,"url":null,"abstract":"<p>Climate change, earthquakes, and human activities are accelerating the degradation of permafrost, leading to loess failures and slope instability. Some engineering corridors (ECs)/infrastructures located on the northeastern margin of the Qinghai-Tibet Plateau (NE-QTP) of China are heavily influenced by landslide phenomena due to being built on permafrost, loess, and seasonally frozen ground. However, few systematic investigations have been carried out in this area. To compile a comprehensive landslide inventory, we visually interpreted 11,914 landslides in GaoFen-6 images taken from 2021 to 2022. We observe that approximately 44.85% of the infrastructures are affected by landslides. Then, based on the ground types and triggering factors, landslides are classified into three types: freeze‒thaw landslides (FTLs), loess landslides (LLs), and general landslides (GLs). More specifically, FTLs are mainly distributed in the boundary regions between permafrost and seasonally frozen ground. The LLs exhibit high-density clustered distribution characteristics. GLs have significant transitional characteristics and commonalities between FTLs and LLs. Furthermore, we apply the geographical detector to determine the controlling factors of the landslides that occurred. We find that the temperature change is the primary controller on the FTLs. The water exhibits a certain correlation with LLs. And the earthquake is the most important factor on the GLs. Our study provides a significant dataset for quantifying the analysis of landslides in NE-QTP.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landslides along the Engineering Corridors in the Northeastern Margin of the Qinghai-Tibet Plateau of China: Comprehensive Inventory and Mechanism Analysis\",\"authors\":\"Jing Zhang, Jie Chen, Chengqiu Li, Wei Lu, Junming Hao, Pengfei Niu, Kechang Li, Siyuan Ma, Ren-mao Yuan\",\"doi\":\"10.1007/s10346-024-02341-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change, earthquakes, and human activities are accelerating the degradation of permafrost, leading to loess failures and slope instability. Some engineering corridors (ECs)/infrastructures located on the northeastern margin of the Qinghai-Tibet Plateau (NE-QTP) of China are heavily influenced by landslide phenomena due to being built on permafrost, loess, and seasonally frozen ground. However, few systematic investigations have been carried out in this area. To compile a comprehensive landslide inventory, we visually interpreted 11,914 landslides in GaoFen-6 images taken from 2021 to 2022. We observe that approximately 44.85% of the infrastructures are affected by landslides. Then, based on the ground types and triggering factors, landslides are classified into three types: freeze‒thaw landslides (FTLs), loess landslides (LLs), and general landslides (GLs). More specifically, FTLs are mainly distributed in the boundary regions between permafrost and seasonally frozen ground. The LLs exhibit high-density clustered distribution characteristics. GLs have significant transitional characteristics and commonalities between FTLs and LLs. Furthermore, we apply the geographical detector to determine the controlling factors of the landslides that occurred. We find that the temperature change is the primary controller on the FTLs. The water exhibits a certain correlation with LLs. And the earthquake is the most important factor on the GLs. Our study provides a significant dataset for quantifying the analysis of landslides in NE-QTP.</p>\",\"PeriodicalId\":17938,\"journal\":{\"name\":\"Landslides\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Landslides\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10346-024-02341-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02341-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Landslides along the Engineering Corridors in the Northeastern Margin of the Qinghai-Tibet Plateau of China: Comprehensive Inventory and Mechanism Analysis
Climate change, earthquakes, and human activities are accelerating the degradation of permafrost, leading to loess failures and slope instability. Some engineering corridors (ECs)/infrastructures located on the northeastern margin of the Qinghai-Tibet Plateau (NE-QTP) of China are heavily influenced by landslide phenomena due to being built on permafrost, loess, and seasonally frozen ground. However, few systematic investigations have been carried out in this area. To compile a comprehensive landslide inventory, we visually interpreted 11,914 landslides in GaoFen-6 images taken from 2021 to 2022. We observe that approximately 44.85% of the infrastructures are affected by landslides. Then, based on the ground types and triggering factors, landslides are classified into three types: freeze‒thaw landslides (FTLs), loess landslides (LLs), and general landslides (GLs). More specifically, FTLs are mainly distributed in the boundary regions between permafrost and seasonally frozen ground. The LLs exhibit high-density clustered distribution characteristics. GLs have significant transitional characteristics and commonalities between FTLs and LLs. Furthermore, we apply the geographical detector to determine the controlling factors of the landslides that occurred. We find that the temperature change is the primary controller on the FTLs. The water exhibits a certain correlation with LLs. And the earthquake is the most important factor on the GLs. Our study provides a significant dataset for quantifying the analysis of landslides in NE-QTP.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database