{"title":"超越可见光:用于面部软生物识别估算的热数据","authors":"Nelida Mirabet-Herranz, Jean-Luc Dugelay","doi":"10.1186/s13640-024-00640-5","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the estimation of biometric parameters from facial visuals, including images and videos, has emerged as a prominent area of research. However, the robustness of deep learning-based models is challenged, particularly in the presence of changing illumination conditions. To overcome these limitations and unlock new opportunities, thermal imagery has arisen as a viable alternative. Nevertheless, the limited availability of datasets containing thermal data and the small amount of annotations on them limits the exploration of this spectrum. Motivated by this gap, this paper introduces the Label-EURECOM Visible and Thermal (LVT) Face Dataset for face biometrics. This pioneering dataset includes paired visible and thermal images and videos from 52 subjects along with metadata of 22 soft biometrics and health parameters. Due to the reduced number of existing datasets in this domain, the LVT Face Dataset aims to facilitate further research and advancements in the utilization of thermal imagery for diverse eHealth applications and soft biometric estimation. Moreover, we present the first comparative study between visible and thermal spectra as input images for soft biometric estimation, namely gender age and weight, from face images on our collected dataset.</p>","PeriodicalId":49322,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":"4 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the visible: thermal data for facial soft biometric estimation\",\"authors\":\"Nelida Mirabet-Herranz, Jean-Luc Dugelay\",\"doi\":\"10.1186/s13640-024-00640-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the estimation of biometric parameters from facial visuals, including images and videos, has emerged as a prominent area of research. However, the robustness of deep learning-based models is challenged, particularly in the presence of changing illumination conditions. To overcome these limitations and unlock new opportunities, thermal imagery has arisen as a viable alternative. Nevertheless, the limited availability of datasets containing thermal data and the small amount of annotations on them limits the exploration of this spectrum. Motivated by this gap, this paper introduces the Label-EURECOM Visible and Thermal (LVT) Face Dataset for face biometrics. This pioneering dataset includes paired visible and thermal images and videos from 52 subjects along with metadata of 22 soft biometrics and health parameters. Due to the reduced number of existing datasets in this domain, the LVT Face Dataset aims to facilitate further research and advancements in the utilization of thermal imagery for diverse eHealth applications and soft biometric estimation. Moreover, we present the first comparative study between visible and thermal spectra as input images for soft biometric estimation, namely gender age and weight, from face images on our collected dataset.</p>\",\"PeriodicalId\":49322,\"journal\":{\"name\":\"Eurasip Journal on Image and Video Processing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Image and Video Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13640-024-00640-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13640-024-00640-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beyond the visible: thermal data for facial soft biometric estimation
In recent years, the estimation of biometric parameters from facial visuals, including images and videos, has emerged as a prominent area of research. However, the robustness of deep learning-based models is challenged, particularly in the presence of changing illumination conditions. To overcome these limitations and unlock new opportunities, thermal imagery has arisen as a viable alternative. Nevertheless, the limited availability of datasets containing thermal data and the small amount of annotations on them limits the exploration of this spectrum. Motivated by this gap, this paper introduces the Label-EURECOM Visible and Thermal (LVT) Face Dataset for face biometrics. This pioneering dataset includes paired visible and thermal images and videos from 52 subjects along with metadata of 22 soft biometrics and health parameters. Due to the reduced number of existing datasets in this domain, the LVT Face Dataset aims to facilitate further research and advancements in the utilization of thermal imagery for diverse eHealth applications and soft biometric estimation. Moreover, we present the first comparative study between visible and thermal spectra as input images for soft biometric estimation, namely gender age and weight, from face images on our collected dataset.
期刊介绍:
EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.