论曲线的𝑝-rank

Pub Date : 2024-03-29 DOI:10.1090/proc/16841
Sadik Terzİ
{"title":"论曲线的𝑝-rank","authors":"Sadik Terzİ","doi":"10.1090/proc/16841","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the computations of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rank of curves in two different setups. We first work with complete intersection varieties in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper P Superscript n Baseline for n greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"bold\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mtext> for </mml:mtext> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbf {P}^n \\text { for } n\\ge 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and compute explicitly the action of Frobenius on the top cohomology group. In case of curves and surfaces, this information suffices to determine if the variety is ordinary. Next, we consider curves on more general surfaces with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript g Baseline left-parenthesis upper S right-parenthesis equals 0 equals q left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>=</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p_g(S) = 0 = q(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such as Hirzebruch surfaces and determine <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rank of curves on Hirzebruch surfaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the 𝑝-rank of curves\",\"authors\":\"Sadik Terzİ\",\"doi\":\"10.1090/proc/16841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are concerned with the computations of the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rank of curves in two different setups. We first work with complete intersection varieties in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"bold upper P Superscript n Baseline for n greater-than-or-equal-to 2\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"bold\\\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mtext> for </mml:mtext> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbf {P}^n \\\\text { for } n\\\\ge 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and compute explicitly the action of Frobenius on the top cohomology group. In case of curves and surfaces, this information suffices to determine if the variety is ordinary. Next, we consider curves on more general surfaces with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Subscript g Baseline left-parenthesis upper S right-parenthesis equals 0 equals q left-parenthesis upper S right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>=</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p_g(S) = 0 = q(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such as Hirzebruch surfaces and determine <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rank of curves on Hirzebruch surfaces.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们关注两种不同情况下曲线 p p -rank 的计算。我们首先处理 n ≥ 2 \mathbf {P}^n \text { for } n\ge 2 的 P n 中的完全交集品种,并明确计算 Frobenius 对顶同调群的作用。在曲线和曲面的情况下,这些信息足以确定该变化是否普通。接下来,我们考虑更一般的曲面上的曲线,即 p g ( S ) = 0 = q ( S ) p_g(S) = 0 = q(S),如希尔泽布鲁赫曲面,并确定希尔泽布鲁赫曲面上曲线的 p p -rank。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the 𝑝-rank of curves

In this paper, we are concerned with the computations of the p p -rank of curves in two different setups. We first work with complete intersection varieties in P n for n 2 \mathbf {P}^n \text { for } n\ge 2 and compute explicitly the action of Frobenius on the top cohomology group. In case of curves and surfaces, this information suffices to determine if the variety is ordinary. Next, we consider curves on more general surfaces with p g ( S ) = 0 = q ( S ) p_g(S) = 0 = q(S) such as Hirzebruch surfaces and determine p p -rank of curves on Hirzebruch surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信