FAIM:面向医疗保健领域可信机器学习的公平感知可解释建模

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu
{"title":"FAIM:面向医疗保健领域可信机器学习的公平感知可解释建模","authors":"Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu","doi":"10.1016/j.patter.2024.101059","DOIUrl":null,"url":null,"abstract":"<p>The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"195 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare\",\"authors\":\"Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu\",\"doi\":\"10.1016/j.patter.2024.101059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习与医疗保健等高风险领域的整合不断升级,引起了人们对模型公平性的极大关注。我们提出了一个可解释的框架--公平感知可解释建模(FAIM),以在不影响性能的情况下提高模型的公平性,其特点是从一组高性能模型中识别出 "更公平 "模型的交互式界面,并促进数据驱动的证据和临床专业知识的整合,以提高情境公平性。我们利用两个真实世界的数据库--重症监护医学信息市场 IV 急诊部(MIMIC-IV-ED)和新加坡中央医院急诊部(SGH-ED)收集的数据库--预测入院情况,证明了 FAIM 在减少种族和性别交叉偏见方面的价值。对于这两个数据集,FAIM 模型不仅表现出令人满意的判别性能,而且还能显著减轻偏差,这是用公认的公平性指标来衡量的,优于常用的减轻偏差方法。我们的方法证明了在不牺牲性能的情况下提高公平性的可行性,并提供了一种可邀请领域专家参与的建模模式,促进了多学科合作,以实现量身定制的人工智能公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare

FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare

The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信