{"title":"为实现敏感数据研究的民主化,我们应该让合成数据更容易获取","authors":"Erik-Jan van Kesteren","doi":"10.1016/j.patter.2024.101049","DOIUrl":null,"url":null,"abstract":"<p>For over 30 years, synthetic data have been heralded as a solution to make sensitive datasets accessible. However, despite much research effort, its adoption as a tool for research with sensitive data is lacking. This article argues that to make progress in this regard, the data science community should focus on improving the accessibility of existing privacy-friendly synthesis techniques.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"8 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To democratize research with sensitive data, we should make synthetic data more accessible\",\"authors\":\"Erik-Jan van Kesteren\",\"doi\":\"10.1016/j.patter.2024.101049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For over 30 years, synthetic data have been heralded as a solution to make sensitive datasets accessible. However, despite much research effort, its adoption as a tool for research with sensitive data is lacking. This article argues that to make progress in this regard, the data science community should focus on improving the accessibility of existing privacy-friendly synthesis techniques.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
To democratize research with sensitive data, we should make synthetic data more accessible
For over 30 years, synthetic data have been heralded as a solution to make sensitive datasets accessible. However, despite much research effort, its adoption as a tool for research with sensitive data is lacking. This article argues that to make progress in this regard, the data science community should focus on improving the accessibility of existing privacy-friendly synthesis techniques.