Aravind Papasani, G. P. Saradhi Varma, P. V. G. D. Prasad Reddy, V. Ramanjaneyulu Yannam
{"title":"软件定义网络中具有修改容量约束的增强型容性下一控制器布局","authors":"Aravind Papasani, G. P. Saradhi Varma, P. V. G. D. Prasad Reddy, V. Ramanjaneyulu Yannam","doi":"10.1002/dac.5979","DOIUrl":null,"url":null,"abstract":"SummarySoftware‐defined networking (SDN) is an emerging networking architecture paradigm that decouples the control and data planes. The problem of figuring out the number and positions of controllers and mapping of switches to them is known as the controller placement problem. To provide the resilience against the failure of a controller, each switch is mapped to a primary controller (first reference controller or FRC) and a backup controller (second reference controller or SRC). An existing work aims to minimize the worst‐case latency (WCL) from switch to controller when a controller fails. But this work misses the constraint specifying the definition of a switch's SRC, which might cause an increase in the latency between some switches and their controllers in the event of a controller failure. In order to address this issue, a model is proposed in this paper by incorporating the missing constraint. But the addition of this constraint can potentially cause an increase in the minimum number of required controllers. In order to address this issue, a second model is proposed in this paper by modifying the capacity constraint based on the observation that the capacity of a controller need not be reserved for all the switches for which it acts as SRC. The two proposed models aim at minimizing the WCL from switch to controller when a controller fails. Three network topologies are used to test the proposed models and compare their performance with the existing model in terms of principal and subsidiary metrics. The results demonstrate that the proposed models perform on equal level with the existing model in terms of WCL from switch to SRC while outperforming it in terms of average latency (AL). For example, the first proposed model achieves an average AL reduction of 21.63%, 8.55%, and 25.13% compared with the existing model on three networks. Similarly, the second proposed model achieves an average AL reduction of 21.3%, 8.55%, and 24.19% in each network on three networks. Moreover, the second proposed model achieves a fair trade‐off between the minimum number of controllers required and AL while outperforming both the existing and the first proposed models in terms of the average percentage of reserved controller capacity.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"42 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced capacitated next controller placement in software‐defined network with modified capacity constraint\",\"authors\":\"Aravind Papasani, G. P. Saradhi Varma, P. V. G. D. Prasad Reddy, V. Ramanjaneyulu Yannam\",\"doi\":\"10.1002/dac.5979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummarySoftware‐defined networking (SDN) is an emerging networking architecture paradigm that decouples the control and data planes. The problem of figuring out the number and positions of controllers and mapping of switches to them is known as the controller placement problem. To provide the resilience against the failure of a controller, each switch is mapped to a primary controller (first reference controller or FRC) and a backup controller (second reference controller or SRC). An existing work aims to minimize the worst‐case latency (WCL) from switch to controller when a controller fails. But this work misses the constraint specifying the definition of a switch's SRC, which might cause an increase in the latency between some switches and their controllers in the event of a controller failure. In order to address this issue, a model is proposed in this paper by incorporating the missing constraint. But the addition of this constraint can potentially cause an increase in the minimum number of required controllers. In order to address this issue, a second model is proposed in this paper by modifying the capacity constraint based on the observation that the capacity of a controller need not be reserved for all the switches for which it acts as SRC. The two proposed models aim at minimizing the WCL from switch to controller when a controller fails. Three network topologies are used to test the proposed models and compare their performance with the existing model in terms of principal and subsidiary metrics. The results demonstrate that the proposed models perform on equal level with the existing model in terms of WCL from switch to SRC while outperforming it in terms of average latency (AL). For example, the first proposed model achieves an average AL reduction of 21.63%, 8.55%, and 25.13% compared with the existing model on three networks. Similarly, the second proposed model achieves an average AL reduction of 21.3%, 8.55%, and 24.19% in each network on three networks. Moreover, the second proposed model achieves a fair trade‐off between the minimum number of controllers required and AL while outperforming both the existing and the first proposed models in terms of the average percentage of reserved controller capacity.\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/dac.5979\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5979","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhanced capacitated next controller placement in software‐defined network with modified capacity constraint
SummarySoftware‐defined networking (SDN) is an emerging networking architecture paradigm that decouples the control and data planes. The problem of figuring out the number and positions of controllers and mapping of switches to them is known as the controller placement problem. To provide the resilience against the failure of a controller, each switch is mapped to a primary controller (first reference controller or FRC) and a backup controller (second reference controller or SRC). An existing work aims to minimize the worst‐case latency (WCL) from switch to controller when a controller fails. But this work misses the constraint specifying the definition of a switch's SRC, which might cause an increase in the latency between some switches and their controllers in the event of a controller failure. In order to address this issue, a model is proposed in this paper by incorporating the missing constraint. But the addition of this constraint can potentially cause an increase in the minimum number of required controllers. In order to address this issue, a second model is proposed in this paper by modifying the capacity constraint based on the observation that the capacity of a controller need not be reserved for all the switches for which it acts as SRC. The two proposed models aim at minimizing the WCL from switch to controller when a controller fails. Three network topologies are used to test the proposed models and compare their performance with the existing model in terms of principal and subsidiary metrics. The results demonstrate that the proposed models perform on equal level with the existing model in terms of WCL from switch to SRC while outperforming it in terms of average latency (AL). For example, the first proposed model achieves an average AL reduction of 21.63%, 8.55%, and 25.13% compared with the existing model on three networks. Similarly, the second proposed model achieves an average AL reduction of 21.3%, 8.55%, and 24.19% in each network on three networks. Moreover, the second proposed model achieves a fair trade‐off between the minimum number of controllers required and AL while outperforming both the existing and the first proposed models in terms of the average percentage of reserved controller capacity.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.