作为动力系统吸引子障碍的不变量及其在非整体力学中的作用

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Luis C. García-Naranjo, Rafael Ortega, Antonio J. Ureña
{"title":"作为动力系统吸引子障碍的不变量及其在非整体力学中的作用","authors":"Luis C. García-Naranjo,&nbsp;Rafael Ortega,&nbsp;Antonio J. Ureña","doi":"10.1134/S156035472456003X","DOIUrl":null,"url":null,"abstract":"<div><p>We present some results on the absence of a wide class of invariant measures for dynamical systems possessing attractors.\nWe then consider a generalization of the classical nonholonomic Suslov problem which shows how previous investigations of existence of\ninvariant measures for nonholonomic\nsystems should necessarily be extended beyond the class of measures with strictly positive <span>\\(C^{1}\\)</span> densities\nif one wishes to determine dynamical obstructions to the presence of attractors.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 5","pages":"751 - 763"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant Measures as Obstructions to Attractors in Dynamical Systems and Their Role in Nonholonomic Mechanics\",\"authors\":\"Luis C. García-Naranjo,&nbsp;Rafael Ortega,&nbsp;Antonio J. Ureña\",\"doi\":\"10.1134/S156035472456003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present some results on the absence of a wide class of invariant measures for dynamical systems possessing attractors.\\nWe then consider a generalization of the classical nonholonomic Suslov problem which shows how previous investigations of existence of\\ninvariant measures for nonholonomic\\nsystems should necessarily be extended beyond the class of measures with strictly positive <span>\\\\(C^{1}\\\\)</span> densities\\nif one wishes to determine dynamical obstructions to the presence of attractors.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"29 5\",\"pages\":\"751 - 763\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S156035472456003X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S156035472456003X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

然后,我们考虑了经典非全局苏斯洛夫问题的广义化,该问题表明,如果我们希望确定吸引子存在的动力学障碍,那么之前对非全局系统不变度量存在性的研究必然要扩展到具有严格正\(C^{1}\)密度的度量类别之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Invariant Measures as Obstructions to Attractors in Dynamical Systems and Their Role in Nonholonomic Mechanics

Invariant Measures as Obstructions to Attractors in Dynamical Systems and Their Role in Nonholonomic Mechanics

We present some results on the absence of a wide class of invariant measures for dynamical systems possessing attractors. We then consider a generalization of the classical nonholonomic Suslov problem which shows how previous investigations of existence of invariant measures for nonholonomic systems should necessarily be extended beyond the class of measures with strictly positive \(C^{1}\) densities if one wishes to determine dynamical obstructions to the presence of attractors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信