{"title":"通过双策略样本选择实现用于医学图像分割的降噪神经网络","authors":"Jialin Shi, Youquan Yang, Kailai Zhang","doi":"10.1002/cpe.8271","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Deep neural networks for medical image segmentation often face the problem of insufficient clean labeled data. Although non-expert annotations are more readily accessible, these low-quality annotations lead to significant performance degradation of existing neural network methods. In this paper, we focus on robust learning of medical image segmentation with noisy annotations and propose a novel noise-tolerant framework based on dual-strategy sample selection, which selects the informative samples to provide effective supervision information. First, we propose the first round of sample selection by designing a novel joint loss, which includes conventional supervised loss and regularization loss. To further select information-rich samples, we propose confidence-based pseudo-label sample selection from a novel perspective as the complement. The dual strategies are used in a collaborative manner and the network is optimized with mined informative samples. We conducted extensive experiments on datasets with both simulated noisy labels and real-world noisy labels. For instance, on a simulated dataset with 25% noise ratio, our method achieves segmentation Dice value with 90.56% <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation>$$ \\pm $$</annotation>\n </semantics></math> 0.03%. Furthermore, increasing the noise ratio to 95%, our method still maintains a high Dice value of 73.85% <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation>$$ \\pm $$</annotation>\n </semantics></math> 0.28% compared to other baselines. Extensive results have demonstrated that our method can weaken the effects of noisy labels on medical image segmentation.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 25","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise-robust neural networks for medical image segmentation by dual-strategy sample selection\",\"authors\":\"Jialin Shi, Youquan Yang, Kailai Zhang\",\"doi\":\"10.1002/cpe.8271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Deep neural networks for medical image segmentation often face the problem of insufficient clean labeled data. Although non-expert annotations are more readily accessible, these low-quality annotations lead to significant performance degradation of existing neural network methods. In this paper, we focus on robust learning of medical image segmentation with noisy annotations and propose a novel noise-tolerant framework based on dual-strategy sample selection, which selects the informative samples to provide effective supervision information. First, we propose the first round of sample selection by designing a novel joint loss, which includes conventional supervised loss and regularization loss. To further select information-rich samples, we propose confidence-based pseudo-label sample selection from a novel perspective as the complement. The dual strategies are used in a collaborative manner and the network is optimized with mined informative samples. We conducted extensive experiments on datasets with both simulated noisy labels and real-world noisy labels. For instance, on a simulated dataset with 25% noise ratio, our method achieves segmentation Dice value with 90.56% <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n <annotation>$$ \\\\pm $$</annotation>\\n </semantics></math> 0.03%. Furthermore, increasing the noise ratio to 95%, our method still maintains a high Dice value of 73.85% <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n <annotation>$$ \\\\pm $$</annotation>\\n </semantics></math> 0.28% compared to other baselines. Extensive results have demonstrated that our method can weaken the effects of noisy labels on medical image segmentation.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"36 25\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8271\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8271","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Noise-robust neural networks for medical image segmentation by dual-strategy sample selection
Deep neural networks for medical image segmentation often face the problem of insufficient clean labeled data. Although non-expert annotations are more readily accessible, these low-quality annotations lead to significant performance degradation of existing neural network methods. In this paper, we focus on robust learning of medical image segmentation with noisy annotations and propose a novel noise-tolerant framework based on dual-strategy sample selection, which selects the informative samples to provide effective supervision information. First, we propose the first round of sample selection by designing a novel joint loss, which includes conventional supervised loss and regularization loss. To further select information-rich samples, we propose confidence-based pseudo-label sample selection from a novel perspective as the complement. The dual strategies are used in a collaborative manner and the network is optimized with mined informative samples. We conducted extensive experiments on datasets with both simulated noisy labels and real-world noisy labels. For instance, on a simulated dataset with 25% noise ratio, our method achieves segmentation Dice value with 90.56% 0.03%. Furthermore, increasing the noise ratio to 95%, our method still maintains a high Dice value of 73.85% 0.28% compared to other baselines. Extensive results have demonstrated that our method can weaken the effects of noisy labels on medical image segmentation.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.