Danish Mehmood Mughal, Tahira Mahboob, Syed Tariq Shah, Sang‐Hyo Kim, Min Young Chung
{"title":"下一代多运营商蜂窝网络中基于深度学习的频谱共享","authors":"Danish Mehmood Mughal, Tahira Mahboob, Syed Tariq Shah, Sang‐Hyo Kim, Min Young Chung","doi":"10.1002/dac.5964","DOIUrl":null,"url":null,"abstract":"SummaryOwing to the exponential increase in wireless network services and bandwidth requirements, sharing the radio spectrum among multiple network operators seems inevitable. In wireless networks, enabling efficient spectrum sharing for resource allocation is quite challenging due to several random factors, especially in multi‐operator spectrum sharing. While spectrum sensing can be useful in spectrum‐sharing networks, the chance of collision exists due to the inherent unreliability of wireless networks, making operators reluctant to use sensing‐based mechanisms for spectrum sharing. To circumvent these issues, we utilize an alternative approach, whereby we propose an efficient spectrum‐sharing mechanism leveraging a spectrum coordinator (SC) in a multi‐operator spectrum‐sharing scenario assisted by deep learning (DL). In our proposed scheme, before the beginning of each timeslot, the base station of each operator transmits the number of required resources based on the number of packets in the base station's queue to SC. In addition, base stations also transmit the list of available channels to SC. After gathering information from all base stations, SC distributes this collected information to all the base stations. Each base station then utilizes the DL‐based spectrum‐sharing algorithm and computes the number of resources it can use based on the number of packets in its queue and the number of packets in the queues of other operators. Furthermore, by leveraging DL, each operator also computes the cost it must pay to other operators for using their resources. We evaluate the performance of the proposed network through extensive simulations. It is shown that the proposed DL‐based spectrum‐sharing mechanism outperforms the conventional spectrum allocation scheme, thus paving the way for more dynamic and efficient multi‐operator spectrum sharing.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning‐based spectrum sharing in next generation multi‐operator cellular networks\",\"authors\":\"Danish Mehmood Mughal, Tahira Mahboob, Syed Tariq Shah, Sang‐Hyo Kim, Min Young Chung\",\"doi\":\"10.1002/dac.5964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryOwing to the exponential increase in wireless network services and bandwidth requirements, sharing the radio spectrum among multiple network operators seems inevitable. In wireless networks, enabling efficient spectrum sharing for resource allocation is quite challenging due to several random factors, especially in multi‐operator spectrum sharing. While spectrum sensing can be useful in spectrum‐sharing networks, the chance of collision exists due to the inherent unreliability of wireless networks, making operators reluctant to use sensing‐based mechanisms for spectrum sharing. To circumvent these issues, we utilize an alternative approach, whereby we propose an efficient spectrum‐sharing mechanism leveraging a spectrum coordinator (SC) in a multi‐operator spectrum‐sharing scenario assisted by deep learning (DL). In our proposed scheme, before the beginning of each timeslot, the base station of each operator transmits the number of required resources based on the number of packets in the base station's queue to SC. In addition, base stations also transmit the list of available channels to SC. After gathering information from all base stations, SC distributes this collected information to all the base stations. Each base station then utilizes the DL‐based spectrum‐sharing algorithm and computes the number of resources it can use based on the number of packets in its queue and the number of packets in the queues of other operators. Furthermore, by leveraging DL, each operator also computes the cost it must pay to other operators for using their resources. We evaluate the performance of the proposed network through extensive simulations. It is shown that the proposed DL‐based spectrum‐sharing mechanism outperforms the conventional spectrum allocation scheme, thus paving the way for more dynamic and efficient multi‐operator spectrum sharing.\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/dac.5964\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5964","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deep learning‐based spectrum sharing in next generation multi‐operator cellular networks
SummaryOwing to the exponential increase in wireless network services and bandwidth requirements, sharing the radio spectrum among multiple network operators seems inevitable. In wireless networks, enabling efficient spectrum sharing for resource allocation is quite challenging due to several random factors, especially in multi‐operator spectrum sharing. While spectrum sensing can be useful in spectrum‐sharing networks, the chance of collision exists due to the inherent unreliability of wireless networks, making operators reluctant to use sensing‐based mechanisms for spectrum sharing. To circumvent these issues, we utilize an alternative approach, whereby we propose an efficient spectrum‐sharing mechanism leveraging a spectrum coordinator (SC) in a multi‐operator spectrum‐sharing scenario assisted by deep learning (DL). In our proposed scheme, before the beginning of each timeslot, the base station of each operator transmits the number of required resources based on the number of packets in the base station's queue to SC. In addition, base stations also transmit the list of available channels to SC. After gathering information from all base stations, SC distributes this collected information to all the base stations. Each base station then utilizes the DL‐based spectrum‐sharing algorithm and computes the number of resources it can use based on the number of packets in its queue and the number of packets in the queues of other operators. Furthermore, by leveraging DL, each operator also computes the cost it must pay to other operators for using their resources. We evaluate the performance of the proposed network through extensive simulations. It is shown that the proposed DL‐based spectrum‐sharing mechanism outperforms the conventional spectrum allocation scheme, thus paving the way for more dynamic and efficient multi‐operator spectrum sharing.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.