{"title":"分布式移动 adhoc 网络中使用混合记忆蜻蜓与帝国主义竞争算法设计的有效信道分配方案","authors":"Suganya Rangasamy, Kanmani Ramasamy, Rajesh Kumar Thangavel","doi":"10.1002/dac.5906","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The channel availability problem reaches a higher degree in mobile ad hoc networks (MANETs) and garners a lot of attention in communication networks. Because increased mobile usage might result in a lack of channel allocation, an improved channel allocation technique is presented to tackle the availability problem. The distributed dynamic channel allocation (DDCA) model is built in this paper using the hybrid memory dragonfly with imperialist competitive (HMDIC) method. Based on optimization logic, this strategy assigns the channel to mobile hosts. The MANET provides a dispersed network within the coverage region in the absence of base station infrastructure. The HMDIC optimizer approach in this circumstance randomly begins every respective node to update and store their pbest value utilizing RAM dragonfly employing satellite images. The constraint values are then used to construct the cost function, which results in a strong kind of global optimum solution. The channels are therefore distributed in an effective manner. The HMDIC algorithm is used in this research to build a novel channel allocation system. It makes advantage of the exploration capabilities to successfully explore the individual node using MDA (Modified Dragonfly Algorithm) and locate the global best solution using imperialist competitive algorithm (ICA). Both of these combined tactics are more effective in accelerating the convergence of the allocation model. To validate the performance, the HMDIC-based DDCA system provides promising results in terms of assigning available channels, thereby enhancing channel reuse efficiency and fractional interference.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"37 16","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective channel allocation designed using hybrid memory dragonfly with imperialist competitive algorithm in distributed mobile adhoc network\",\"authors\":\"Suganya Rangasamy, Kanmani Ramasamy, Rajesh Kumar Thangavel\",\"doi\":\"10.1002/dac.5906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The channel availability problem reaches a higher degree in mobile ad hoc networks (MANETs) and garners a lot of attention in communication networks. Because increased mobile usage might result in a lack of channel allocation, an improved channel allocation technique is presented to tackle the availability problem. The distributed dynamic channel allocation (DDCA) model is built in this paper using the hybrid memory dragonfly with imperialist competitive (HMDIC) method. Based on optimization logic, this strategy assigns the channel to mobile hosts. The MANET provides a dispersed network within the coverage region in the absence of base station infrastructure. The HMDIC optimizer approach in this circumstance randomly begins every respective node to update and store their pbest value utilizing RAM dragonfly employing satellite images. The constraint values are then used to construct the cost function, which results in a strong kind of global optimum solution. The channels are therefore distributed in an effective manner. The HMDIC algorithm is used in this research to build a novel channel allocation system. It makes advantage of the exploration capabilities to successfully explore the individual node using MDA (Modified Dragonfly Algorithm) and locate the global best solution using imperialist competitive algorithm (ICA). Both of these combined tactics are more effective in accelerating the convergence of the allocation model. To validate the performance, the HMDIC-based DDCA system provides promising results in terms of assigning available channels, thereby enhancing channel reuse efficiency and fractional interference.</p>\\n </div>\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":\"37 16\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dac.5906\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5906","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An effective channel allocation designed using hybrid memory dragonfly with imperialist competitive algorithm in distributed mobile adhoc network
The channel availability problem reaches a higher degree in mobile ad hoc networks (MANETs) and garners a lot of attention in communication networks. Because increased mobile usage might result in a lack of channel allocation, an improved channel allocation technique is presented to tackle the availability problem. The distributed dynamic channel allocation (DDCA) model is built in this paper using the hybrid memory dragonfly with imperialist competitive (HMDIC) method. Based on optimization logic, this strategy assigns the channel to mobile hosts. The MANET provides a dispersed network within the coverage region in the absence of base station infrastructure. The HMDIC optimizer approach in this circumstance randomly begins every respective node to update and store their pbest value utilizing RAM dragonfly employing satellite images. The constraint values are then used to construct the cost function, which results in a strong kind of global optimum solution. The channels are therefore distributed in an effective manner. The HMDIC algorithm is used in this research to build a novel channel allocation system. It makes advantage of the exploration capabilities to successfully explore the individual node using MDA (Modified Dragonfly Algorithm) and locate the global best solution using imperialist competitive algorithm (ICA). Both of these combined tactics are more effective in accelerating the convergence of the allocation model. To validate the performance, the HMDIC-based DDCA system provides promising results in terms of assigning available channels, thereby enhancing channel reuse efficiency and fractional interference.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.