{"title":"立方 NLS 的斯特里查兹估计值和全局良好性","authors":"Sebastian Herr, Beomjong Kwak","doi":"10.1017/fmp.2024.11","DOIUrl":null,"url":null,"abstract":"The optimal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline2.png\"/> <jats:tex-math> $L^4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline3.png\"/> <jats:tex-math> $\\mathbb {T}^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline4.png\"/> <jats:tex-math> $L^4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline5.png\"/> <jats:tex-math> $H^s(\\mathbb {T}^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000118_inline6.png\"/> <jats:tex-math> $s>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and data that are small in the critical norm.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strichartz estimates and global well-posedness of the cubic NLS on\",\"authors\":\"Sebastian Herr, Beomjong Kwak\",\"doi\":\"10.1017/fmp.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000118_inline2.png\\\"/> <jats:tex-math> $L^4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000118_inline3.png\\\"/> <jats:tex-math> $\\\\mathbb {T}^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000118_inline4.png\\\"/> <jats:tex-math> $L^4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000118_inline5.png\\\"/> <jats:tex-math> $H^s(\\\\mathbb {T}^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000118_inline6.png\\\"/> <jats:tex-math> $s>0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and data that are small in the critical norm.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2024.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Strichartz estimates and global well-posedness of the cubic NLS on
The optimal $L^4$ -Strichartz estimate for the Schrödinger equation on the two-dimensional rational torus $\mathbb {T}^2$ is proved, which improves an estimate of Bourgain. A new method based on incidence geometry is used. The approach yields a stronger $L^4$ bound on a logarithmic time scale, which implies global existence of solutions to the cubic (mass-critical) nonlinear Schrödinger equation in $H^s(\mathbb {T}^2)$ for any $s>0$ and data that are small in the critical norm.