Wee Teck Gan, Michael Harris, Will Sawin, Raphaël Beuzart-Plessis
{"title":"超括弧表示的局部参数","authors":"Wee Teck Gan, Michael Harris, Will Sawin, Raphaël Beuzart-Plessis","doi":"10.1017/fmp.2024.10","DOIUrl":null,"url":null,"abstract":"For a connected reductive group <jats:italic>G</jats:italic> over a nonarchimedean local field <jats:italic>F</jats:italic> of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline1.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to each irreducible representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline2.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our first result shows that the Genestier-Lafforgue parameter of a tempered <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline3.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> can be uniquely refined to a tempered L-parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline4.png\"/> <jats:tex-math> ${\\mathcal {L}}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline5.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for unramified <jats:italic>G</jats:italic> and supercuspidal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline6.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> constructed by induction from an open compact (modulo center) subgroup. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline7.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is pure in an appropriate sense, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline8.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is ramified (unless <jats:italic>G</jats:italic> is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline9.png\"/> <jats:tex-math> $\\mathcal {L}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline10.png\"/> <jats:tex-math> ${\\mathbb {P}}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a simple application of Deligne’s Weil II.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local parameters of supercuspidal representations\",\"authors\":\"Wee Teck Gan, Michael Harris, Will Sawin, Raphaël Beuzart-Plessis\",\"doi\":\"10.1017/fmp.2024.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a connected reductive group <jats:italic>G</jats:italic> over a nonarchimedean local field <jats:italic>F</jats:italic> of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline1.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to each irreducible representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline2.png\\\"/> <jats:tex-math> $\\\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our first result shows that the Genestier-Lafforgue parameter of a tempered <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline3.png\\\"/> <jats:tex-math> $\\\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> can be uniquely refined to a tempered L-parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline4.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline5.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for unramified <jats:italic>G</jats:italic> and supercuspidal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline6.png\\\"/> <jats:tex-math> $\\\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> constructed by induction from an open compact (modulo center) subgroup. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline7.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is pure in an appropriate sense, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline8.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is ramified (unless <jats:italic>G</jats:italic> is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline9.png\\\"/> <jats:tex-math> $\\\\mathcal {L}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline10.png\\\"/> <jats:tex-math> ${\\\\mathbb {P}}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a simple application of Deligne’s Weil II.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2024.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
For a connected reductive group G over a nonarchimedean local field F of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter ${\mathcal {L}}^{ss}(\pi )$ to each irreducible representation $\pi $ . Our first result shows that the Genestier-Lafforgue parameter of a tempered $\pi $ can be uniquely refined to a tempered L-parameter ${\mathcal {L}}(\pi )$ , thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of ${\mathcal {L}}^{ss}(\pi )$ for unramified G and supercuspidal $\pi $ constructed by induction from an open compact (modulo center) subgroup. If ${\mathcal {L}}^{ss}(\pi )$ is pure in an appropriate sense, we show that ${\mathcal {L}}^{ss}(\pi )$ is ramified (unless G is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show $\mathcal {L}^{ss}(\pi )$ is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is ${\mathbb {P}}^1$ and a simple application of Deligne’s Weil II.