Wee Teck Gan, Michael Harris, Will Sawin, Raphaël Beuzart-Plessis
{"title":"超括弧表示的局部参数","authors":"Wee Teck Gan, Michael Harris, Will Sawin, Raphaël Beuzart-Plessis","doi":"10.1017/fmp.2024.10","DOIUrl":null,"url":null,"abstract":"For a connected reductive group <jats:italic>G</jats:italic> over a nonarchimedean local field <jats:italic>F</jats:italic> of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline1.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to each irreducible representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline2.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our first result shows that the Genestier-Lafforgue parameter of a tempered <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline3.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> can be uniquely refined to a tempered L-parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline4.png\"/> <jats:tex-math> ${\\mathcal {L}}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline5.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for unramified <jats:italic>G</jats:italic> and supercuspidal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline6.png\"/> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> constructed by induction from an open compact (modulo center) subgroup. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline7.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is pure in an appropriate sense, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline8.png\"/> <jats:tex-math> ${\\mathcal {L}}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is ramified (unless <jats:italic>G</jats:italic> is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline9.png\"/> <jats:tex-math> $\\mathcal {L}^{ss}(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000106_inline10.png\"/> <jats:tex-math> ${\\mathbb {P}}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a simple application of Deligne’s Weil II.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"87 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local parameters of supercuspidal representations\",\"authors\":\"Wee Teck Gan, Michael Harris, Will Sawin, Raphaël Beuzart-Plessis\",\"doi\":\"10.1017/fmp.2024.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a connected reductive group <jats:italic>G</jats:italic> over a nonarchimedean local field <jats:italic>F</jats:italic> of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline1.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to each irreducible representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline2.png\\\"/> <jats:tex-math> $\\\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our first result shows that the Genestier-Lafforgue parameter of a tempered <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline3.png\\\"/> <jats:tex-math> $\\\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> can be uniquely refined to a tempered L-parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline4.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline5.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for unramified <jats:italic>G</jats:italic> and supercuspidal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline6.png\\\"/> <jats:tex-math> $\\\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> constructed by induction from an open compact (modulo center) subgroup. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline7.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is pure in an appropriate sense, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline8.png\\\"/> <jats:tex-math> ${\\\\mathcal {L}}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is ramified (unless <jats:italic>G</jats:italic> is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline9.png\\\"/> <jats:tex-math> $\\\\mathcal {L}^{ss}(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000106_inline10.png\\\"/> <jats:tex-math> ${\\\\mathbb {P}}^1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a simple application of Deligne’s Weil II.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2024.10\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.10","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a connected reductive group G over a nonarchimedean local field F of positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter ${\mathcal {L}}^{ss}(\pi )$ to each irreducible representation $\pi $ . Our first result shows that the Genestier-Lafforgue parameter of a tempered $\pi $ can be uniquely refined to a tempered L-parameter ${\mathcal {L}}(\pi )$ , thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of ${\mathcal {L}}^{ss}(\pi )$ for unramified G and supercuspidal $\pi $ constructed by induction from an open compact (modulo center) subgroup. If ${\mathcal {L}}^{ss}(\pi )$ is pure in an appropriate sense, we show that ${\mathcal {L}}^{ss}(\pi )$ is ramified (unless G is a torus). If the inducing subgroup is sufficiently small in a precise sense, we show $\mathcal {L}^{ss}(\pi )$ is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is ${\mathbb {P}}^1$ and a simple application of Deligne’s Weil II.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.