{"title":"同调不变式的可定义内容 II:切赫同调与同调分类","authors":"Jeffrey Bergfalk, Martino Lupini, Aristotelis Panagiotopoulos","doi":"10.1017/fmp.2024.7","DOIUrl":null,"url":null,"abstract":"This is the second installment in a series of papers applying descriptive set theoretic techniques to both analyze and enrich classical functors from homological algebra and algebraic topology. In it, we show that the Čech cohomology functors <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline1.png\"/> on the category of locally compact separable metric spaces each factor into (i) what we term their <jats:italic>definable version</jats:italic>, a functor <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline2.png\"/> taking values in the category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline3.png\"/> <jats:tex-math> $\\mathsf {GPC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>groups with a Polish cover</jats:italic> (a category first introduced in this work’s predecessor), followed by (ii) a forgetful functor from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline4.png\"/> <jats:tex-math> $\\mathsf {GPC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the category of groups. These definable cohomology functors powerfully refine their classical counterparts: we show that they are complete invariants, for example, of the homotopy types of mapping telescopes of <jats:italic>d</jats:italic>-spheres or <jats:italic>d</jats:italic>-tori for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline5.png\"/> <jats:tex-math> $d\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and, in contrast, that there exist uncountable families of pairwise homotopy inequivalent mapping telescopes of either sort on which the classical cohomology functors are constant. We then apply the functors <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline6.png\"/> to show that a seminal problem in the development of algebraic topology – namely, Borsuk and Eilenberg’s 1936 problem of classifying, up to homotopy, the maps from a solenoid complement <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline7.png\"/> <jats:tex-math> $S^3\\backslash \\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline8.png\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-sphere – is essentially hyperfinite but not smooth. Fundamental to our analysis is the fact that the Čech cohomology functors <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline9.png\"/> admit two main formulations: a more combinatorial one and a more homotopical formulation as the group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline10.png\"/> <jats:tex-math> $[X,P]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of homotopy classes of maps from <jats:italic>X</jats:italic> to a polyhedral <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline11.png\"/> <jats:tex-math> $K(G,n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> space <jats:italic>P</jats:italic>. We describe the Borel-definable content of each of these formulations and prove a definable version of Huber’s theorem reconciling the two. In the course of this work, we record definable versions of Urysohn’s Lemma and the simplicial approximation and homotopy extension theorems, along with a definable Milnor-type short exact sequence decomposition of the space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline12.png\"/> <jats:tex-math> $\\mathrm {Map}(X,P)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of its subset of <jats:italic>phantom maps</jats:italic>; relatedly, we provide a topological characterization of this set for any locally compact Polish space <jats:italic>X</jats:italic> and polyhedron <jats:italic>P</jats:italic>. In aggregate, this work may be more broadly construed as laying foundations for the descriptive set theoretic study of the homotopy relation on such spaces <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline13.png\"/> <jats:tex-math> $\\mathrm {Map}(X,P)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, a relation which, together with the more combinatorial incarnation of <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline14.png\"/>, embodies a substantial variety of classification problems arising throughout mathematics. We show, in particular, that if <jats:italic>P</jats:italic> is a polyhedral <jats:italic>H</jats:italic>-group, then this relation is both Borel and idealistic. In consequence, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline15.png\"/> <jats:tex-math> $[X,P]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> falls in the category of <jats:italic>definable groups</jats:italic>, an extension of the category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050508624000076_inline16.png\"/> <jats:tex-math> $\\mathsf {GPC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> introduced herein for its regularity properties, which facilitate several of the aforementioned computations.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The definable content of homological invariants II: Čech cohomology and homotopy classification\",\"authors\":\"Jeffrey Bergfalk, Martino Lupini, Aristotelis Panagiotopoulos\",\"doi\":\"10.1017/fmp.2024.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the second installment in a series of papers applying descriptive set theoretic techniques to both analyze and enrich classical functors from homological algebra and algebraic topology. In it, we show that the Čech cohomology functors <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline1.png\\\"/> on the category of locally compact separable metric spaces each factor into (i) what we term their <jats:italic>definable version</jats:italic>, a functor <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline2.png\\\"/> taking values in the category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline3.png\\\"/> <jats:tex-math> $\\\\mathsf {GPC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>groups with a Polish cover</jats:italic> (a category first introduced in this work’s predecessor), followed by (ii) a forgetful functor from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline4.png\\\"/> <jats:tex-math> $\\\\mathsf {GPC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the category of groups. These definable cohomology functors powerfully refine their classical counterparts: we show that they are complete invariants, for example, of the homotopy types of mapping telescopes of <jats:italic>d</jats:italic>-spheres or <jats:italic>d</jats:italic>-tori for any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline5.png\\\"/> <jats:tex-math> $d\\\\geq 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and, in contrast, that there exist uncountable families of pairwise homotopy inequivalent mapping telescopes of either sort on which the classical cohomology functors are constant. We then apply the functors <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline6.png\\\"/> to show that a seminal problem in the development of algebraic topology – namely, Borsuk and Eilenberg’s 1936 problem of classifying, up to homotopy, the maps from a solenoid complement <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline7.png\\\"/> <jats:tex-math> $S^3\\\\backslash \\\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline8.png\\\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-sphere – is essentially hyperfinite but not smooth. Fundamental to our analysis is the fact that the Čech cohomology functors <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline9.png\\\"/> admit two main formulations: a more combinatorial one and a more homotopical formulation as the group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline10.png\\\"/> <jats:tex-math> $[X,P]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of homotopy classes of maps from <jats:italic>X</jats:italic> to a polyhedral <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline11.png\\\"/> <jats:tex-math> $K(G,n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> space <jats:italic>P</jats:italic>. We describe the Borel-definable content of each of these formulations and prove a definable version of Huber’s theorem reconciling the two. In the course of this work, we record definable versions of Urysohn’s Lemma and the simplicial approximation and homotopy extension theorems, along with a definable Milnor-type short exact sequence decomposition of the space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline12.png\\\"/> <jats:tex-math> $\\\\mathrm {Map}(X,P)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in terms of its subset of <jats:italic>phantom maps</jats:italic>; relatedly, we provide a topological characterization of this set for any locally compact Polish space <jats:italic>X</jats:italic> and polyhedron <jats:italic>P</jats:italic>. In aggregate, this work may be more broadly construed as laying foundations for the descriptive set theoretic study of the homotopy relation on such spaces <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline13.png\\\"/> <jats:tex-math> $\\\\mathrm {Map}(X,P)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, a relation which, together with the more combinatorial incarnation of <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline14.png\\\"/>, embodies a substantial variety of classification problems arising throughout mathematics. We show, in particular, that if <jats:italic>P</jats:italic> is a polyhedral <jats:italic>H</jats:italic>-group, then this relation is both Borel and idealistic. In consequence, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline15.png\\\"/> <jats:tex-math> $[X,P]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> falls in the category of <jats:italic>definable groups</jats:italic>, an extension of the category <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050508624000076_inline16.png\\\"/> <jats:tex-math> $\\\\mathsf {GPC}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> introduced herein for its regularity properties, which facilitate several of the aforementioned computations.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2024.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
这是我们应用描述集合论技术分析和丰富同调代数和代数拓扑学经典函子系列论文的第二篇。在这篇文章中,我们证明了局部紧凑可分离度量空间范畴上的Čech同调函数各自都可以因子化为(i)我们称之为可定义的版本,即在具有波兰盖的群范畴$\mathsf {GPC}$中取值的函数(这一范畴在这篇论文的前身中首次引入),然后是(ii)从$\mathsf {GPC}$到群范畴的遗忘函数。这些可定义同调函数有力地完善了它们的经典对应物:我们证明了它们是完全不变的,例如,对于任意 $d\geq 1$ 的 d 球或 d 托里的映射望远镜的同调类型,相反,存在着不可计数的成对同调不等的映射望远镜族,而在这两种映射望远镜上,经典同调函数是不变的。然后,我们应用这些函数来证明代数拓扑学发展中的一个开创性问题--即博尔苏克和艾伦伯格在 1936 年提出的问题,即在同调之前,从孤岛补集 $S^3\backslash \Sigma $ 到 $2$ -球面的映射的分类--本质上是超无限的,但不是光滑的。对我们的分析至关重要的事实是,Čech 同调函数允许两种主要的表述:一种是更组合的表述,另一种是更同调的表述,即从 X 到多面体 $K(G,n)$ 空间 P 的映射的同调类的组 $[X,P]$。在这项工作的过程中,我们记录了可定义版本的乌里索恩(Urysohn's Lemma)定理、简约近似(simplicial approximation)定理和同调延伸(homotopy extension)定理,以及根据幻影映射子集对空间 $\mathrm {Map}(X,P)$ 的可定义米尔诺(Milnor)型短精确序列分解;与此相关,我们为任何局部紧凑波兰空间 X 和多面体 P 提供了这个集合的拓扑特征。总之,这项工作可以更广义地理解为为此类空间上的同调关系 $\mathrm {Map}(X,P)$ 的描述性集合论研究奠定了基础,这种关系与更具组合性的化身 , 包含了数学中出现的大量分类问题。我们特别指出,如果 P 是多面体 H 群,那么这个关系既是伯尔的,又是唯心的。因此,$[X,P]$ 属于可定义群范畴,是本文因其正则性而引入的范畴 $mathsf {GPC}$ 的扩展,它有助于上述的一些计算。
The definable content of homological invariants II: Čech cohomology and homotopy classification
This is the second installment in a series of papers applying descriptive set theoretic techniques to both analyze and enrich classical functors from homological algebra and algebraic topology. In it, we show that the Čech cohomology functors on the category of locally compact separable metric spaces each factor into (i) what we term their definable version, a functor taking values in the category $\mathsf {GPC}$ of groups with a Polish cover (a category first introduced in this work’s predecessor), followed by (ii) a forgetful functor from $\mathsf {GPC}$ to the category of groups. These definable cohomology functors powerfully refine their classical counterparts: we show that they are complete invariants, for example, of the homotopy types of mapping telescopes of d-spheres or d-tori for any $d\geq 1$ , and, in contrast, that there exist uncountable families of pairwise homotopy inequivalent mapping telescopes of either sort on which the classical cohomology functors are constant. We then apply the functors to show that a seminal problem in the development of algebraic topology – namely, Borsuk and Eilenberg’s 1936 problem of classifying, up to homotopy, the maps from a solenoid complement $S^3\backslash \Sigma $ to the $2$ -sphere – is essentially hyperfinite but not smooth. Fundamental to our analysis is the fact that the Čech cohomology functors admit two main formulations: a more combinatorial one and a more homotopical formulation as the group $[X,P]$ of homotopy classes of maps from X to a polyhedral $K(G,n)$ space P. We describe the Borel-definable content of each of these formulations and prove a definable version of Huber’s theorem reconciling the two. In the course of this work, we record definable versions of Urysohn’s Lemma and the simplicial approximation and homotopy extension theorems, along with a definable Milnor-type short exact sequence decomposition of the space $\mathrm {Map}(X,P)$ in terms of its subset of phantom maps; relatedly, we provide a topological characterization of this set for any locally compact Polish space X and polyhedron P. In aggregate, this work may be more broadly construed as laying foundations for the descriptive set theoretic study of the homotopy relation on such spaces $\mathrm {Map}(X,P)$ , a relation which, together with the more combinatorial incarnation of , embodies a substantial variety of classification problems arising throughout mathematics. We show, in particular, that if P is a polyhedral H-group, then this relation is both Borel and idealistic. In consequence, $[X,P]$ falls in the category of definable groups, an extension of the category $\mathsf {GPC}$ introduced herein for its regularity properties, which facilitate several of the aforementioned computations.