{"title":"正电子与乙醛分子结合时 H/D 同位素效应的理论分析","authors":"Kaito Dohi, Masanori Tachikawa, Yukiumi Kita","doi":"10.1140/epjd/s10053-024-00871-1","DOIUrl":null,"url":null,"abstract":"<p>We theoretically analyzed positron affinities (PAs) of acetaldehyde (CH<sub>3</sub>CHO) and its deuterated (CD<sub>3</sub>CDO) molecules at vibrational excited states with multi-component molecular orbital and vibrational quantum Monte Carlo methods. In the fundamental tone states, the PA value at the C=O stretching vibrational mode of acetaldehyde becomes increased by 9.8 meV (+ 12%) from the vibrational ground state of 84.5 meV, while that at the C-H (aldehyde group) stretching vibrational mode decreased by 2.8 meV (<span>\\(-\\)</span>3%). We also confirmed that each vibrational state has a different H/D isotope shift in PA values. Such non-uniformity in quantum vibrational influence on PA values and its H/D isotope shifts dominantly arise from the change in dipole moment by vibrational excitations.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical analysis of H/D isotope effect on the binding of a positron to acetaldehyde molecule\",\"authors\":\"Kaito Dohi, Masanori Tachikawa, Yukiumi Kita\",\"doi\":\"10.1140/epjd/s10053-024-00871-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We theoretically analyzed positron affinities (PAs) of acetaldehyde (CH<sub>3</sub>CHO) and its deuterated (CD<sub>3</sub>CDO) molecules at vibrational excited states with multi-component molecular orbital and vibrational quantum Monte Carlo methods. In the fundamental tone states, the PA value at the C=O stretching vibrational mode of acetaldehyde becomes increased by 9.8 meV (+ 12%) from the vibrational ground state of 84.5 meV, while that at the C-H (aldehyde group) stretching vibrational mode decreased by 2.8 meV (<span>\\\\(-\\\\)</span>3%). We also confirmed that each vibrational state has a different H/D isotope shift in PA values. Such non-uniformity in quantum vibrational influence on PA values and its H/D isotope shifts dominantly arise from the change in dipole moment by vibrational excitations.</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"78 8\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-024-00871-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00871-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们采用多分量分子轨道和振动量子蒙特卡洛方法从理论上分析了乙醛(CH3CHO)及其氚化物(CD3CDO)分子在振动激发态的正电子亲和力(PA)。在基调态,乙醛的 C=O 伸展振动模式的 PA 值比振动基态的 84.5 meV 上升了 9.8 meV(+ 12%),而 C-H(醛基)伸展振动模式的 PA 值下降了 2.8 meV(-/3%)。我们还证实,每个振动态的 PA 值都有不同的 H/D 同位素偏移。量子振动对 PA 值及其 H/D 同位素位移影响的这种不均匀性主要源于振动激发的偶极矩变化。
Theoretical analysis of H/D isotope effect on the binding of a positron to acetaldehyde molecule
We theoretically analyzed positron affinities (PAs) of acetaldehyde (CH3CHO) and its deuterated (CD3CDO) molecules at vibrational excited states with multi-component molecular orbital and vibrational quantum Monte Carlo methods. In the fundamental tone states, the PA value at the C=O stretching vibrational mode of acetaldehyde becomes increased by 9.8 meV (+ 12%) from the vibrational ground state of 84.5 meV, while that at the C-H (aldehyde group) stretching vibrational mode decreased by 2.8 meV (\(-\)3%). We also confirmed that each vibrational state has a different H/D isotope shift in PA values. Such non-uniformity in quantum vibrational influence on PA values and its H/D isotope shifts dominantly arise from the change in dipole moment by vibrational excitations.
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.