使用冯-诺依曼熵的费米子系统基于大化的纠缠准则

IF 1.5 4区 物理与天体物理 Q3 OPTICS
Y. Akbari-Kourbolagh, E. Rezazadeh-Dizaji
{"title":"使用冯-诺依曼熵的费米子系统基于大化的纠缠准则","authors":"Y. Akbari-Kourbolagh,&nbsp;E. Rezazadeh-Dizaji","doi":"10.1140/epjd/s10053-024-00905-8","DOIUrl":null,"url":null,"abstract":"<p>We use the Schur concavity of the von Neumann entropy and introduce a majorization-based entanglement criterion for the states of systems consisting of identical fermions. This criterion is in the form of an inequality between the von Neumann entropies of the total density matrix and the single-particle reduced density matrix which have to be satisfied by the separable states of such systems, and therefore, its violation indicates the entanglement. Our criterion is an improved version of the one introduced by Zander et al. (in Eur. Phys. J. D <b>66</b>: 14, 2012). To illustrate its utility, we use the criterion to various illustrative instances of the families of mixed states and find that when the single-particle Hilbert spaces are of dimension four, the criterion indicates all the entangled states within the families under consideration.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 9","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Majorization-based entanglement criterion for fermion systems using the von Neumann entropy\",\"authors\":\"Y. Akbari-Kourbolagh,&nbsp;E. Rezazadeh-Dizaji\",\"doi\":\"10.1140/epjd/s10053-024-00905-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use the Schur concavity of the von Neumann entropy and introduce a majorization-based entanglement criterion for the states of systems consisting of identical fermions. This criterion is in the form of an inequality between the von Neumann entropies of the total density matrix and the single-particle reduced density matrix which have to be satisfied by the separable states of such systems, and therefore, its violation indicates the entanglement. Our criterion is an improved version of the one introduced by Zander et al. (in Eur. Phys. J. D <b>66</b>: 14, 2012). To illustrate its utility, we use the criterion to various illustrative instances of the families of mixed states and find that when the single-particle Hilbert spaces are of dimension four, the criterion indicates all the entangled states within the families under consideration.</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"78 9\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-024-00905-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00905-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们利用冯-诺依曼熵的舒尔凹性,为由相同费米子组成的系统的状态引入了一个基于大化的纠缠准则。该判据的形式是总密度矩阵的冯-诺依曼熵与单粒子还原密度矩阵的冯-诺依曼熵之间的不等式,此类系统的可分离态必须满足该不等式,因此,违反该不等式表明存在纠缠。我们的标准是赞德等人(Eur. Phys. J. D. 66: 14, 2012)提出的标准的改进版。为了说明它的效用,我们将该准则用于混合态族的各种说明性实例,并发现当单粒子希尔伯特空间的维数为四时,该准则可指示所考虑的族中的所有纠缠态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Majorization-based entanglement criterion for fermion systems using the von Neumann entropy

Majorization-based entanglement criterion for fermion systems using the von Neumann entropy

We use the Schur concavity of the von Neumann entropy and introduce a majorization-based entanglement criterion for the states of systems consisting of identical fermions. This criterion is in the form of an inequality between the von Neumann entropies of the total density matrix and the single-particle reduced density matrix which have to be satisfied by the separable states of such systems, and therefore, its violation indicates the entanglement. Our criterion is an improved version of the one introduced by Zander et al. (in Eur. Phys. J. D 66: 14, 2012). To illustrate its utility, we use the criterion to various illustrative instances of the families of mixed states and find that when the single-particle Hilbert spaces are of dimension four, the criterion indicates all the entangled states within the families under consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信